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1 Lecture I.

1.1 Introduction

Constrained Dynamics are all around Physics, from classical systems like describing the

trajectory of a pendulum or more complicated systems like electromagnetism or even gravity

and its quantum counterpart. During our formation in Physics, especially after doing a

course in quantum �eld theory it is expected to be familiar with the concept of gauge

transformation. This kind of transformation appear �rst in Classical Electromagnetism but

stays with us until the description of the fundamental interactions. These kinds of theories

are actually constrained systems as we will see in more detail. The need for constrained

systems occur a lot in Physics because the necessity of using more coordinates than it is

needed to describe a system. We can see a example of this in the case of a pendulum. It is

possible to use x and y coordinates to describe its movement but ultimately the system is

one dimensional and it is well described by the coordinate θ. In the x and y coordinate we

have the constraint:

x2 + y2 = r2 (1.1)

Figure 1. One dimensional pendulum described by both coordinates systems

The constraint appear in this system to kill the additional degree of freedom that we

putted by using more coordinates than degrees of freedom. In this case we can freely choose

to work with (x, y) or θ coordinates. However, there are cases where one is forced to use more

coordinates because we want a given symmetry to be manifest, like in electromagnetism that

one has 2 degrees of freedom but we use a vector potential with 4 components. This is the

case of 4D gravity as well that we know has 2 degrees of freedom but we use a metric that has

10 independent components. Constraints in general help us to deal with these extra degrees
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of freedom, but we need to be careful when dealing with such a system. Another great

motivation to study constrained dynamics appear when one goes to relativistic systems. In

the description of a relativistic particle we need to enforce the mass shell condition:

p2 +m2 = 0 (1.2)

This states that not all momentum pµ are independent, this is indeed a constraint in

the Phase Space. Learn how to deal with such systems is of great importance, when going

to a quantum description the problems became even more di�cult so a good understanding

of the subject is necessary to move ahead. We will see how to categorize the di�erent

types of constrained systems and how to deal with them classically. The main goal of

these lectures is to understand classical constrained systems and how to move this kind

of system to the quantum realm. It will be discussed the problems of the usual quantum

map and the ambiguities that arise from that. After that we will work out some examples

of quantum constrained systems, �nishing with the usual electromagnetism. The direction

that I will follow is sometimes called Dirac Quantization program or in the case of string

theory, Old Covariant Quantization. As the name suggests it is an old method that has

all the fundamental ingredients to treat quantum mechanically a constrained system, but

in the examples will become clear that such treatment is not always straightforward. This

motivated the creation of more powerful tools to quantize constrained systems, such as

BRST or BV Quantization. One could ask why study this method if there are more e�cient

ways to do the same thing? A simple answer is that all methods rely on understanding the

Dirac Program �rst. In some sense, they only automatize the method by adding additional

objects to the theory (ghosts). Now that the goal is set let's see how this lectures will be

arranged:

• First Lecture: Introduction of the subject, review of Hamiltonian dynamics, an

introduction of classical constraints, Lagrange multipliers and classi�cation of constraints.

• Second Lecture: How to deal with classical constraints.

• Third Lecture: Review of Quantization of non-singular theories, Quantization of

second class constraint and Quantization of �rst class constraints(Dirac Program)

• Fourth Lecture: Dirac Quantization of the non-relativistic and relativistic Free

Particle.

• Fifth Lecture: Dirac Quantization of the Closed Bosonic String.

• Sixth Lecture: Dirac Quantization of the Electromagnetic Field, General remarks

and the road ahead.

The bibliography used to write this lecture notes and recommended about this subject

is:

1. Quantization of Gauge Systems from Marc Henneaux & Claudio Teitelboim.
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2. Lectures on Quantum Mechanics from Paul Dirac.

3. Constrained Dynamics from Kurt Sundermeyer.

4. Quantization of Fields with Constraints from D. M. Gitman & Igor V. Tyutin

With that settle down we can start the review on classical mechanics that will be useful

to understand constrained dynamics, it will be worked only �nite dimensional systems. The

generalization to in�nite dimensional systems is straightforward in this case.

1.2 Things that probably you already know.

The starting point for us is to assume a action functional S that generate the equation of

motion of a given system:

S =

∫
dt L (1.3)

The system is described by n local coordinates {qi}. The Lagrangian L is normally

written in terms of a kinetic and a potential part:

L = T − V (1.4)

In general L can be any function of (q, q̇, t)1 that generate a valid equation of motion

under extremization of such action. Given such a action we can �nd its equation of motion

by �nding its extreme:

δS = 0 (1.5)

This gives us the usual Euler-Lagrange equations under the assumption that q is �xed in

the end points:

δS =

∫
dt δL(q, q̇, t) =

∫
dt

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i
)

(1.6)

Doing a integration by parts and dropping out the boundary term we get:∫
dt

(
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

)
δqi = 0 (1.7)

Because δqi is arbitrary and independent we get the Euler-Lagrange equations:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (1.8)

These are N second order di�erential equations that by solving it under appropriate

boundary conditions �xes our system. The good thing of using Lagrangian to describe

our system is that most of the symmetries are usually manifest in this formalism, for

1We will work with time independent Lagrangian because it has a better geometrical interpretation when

going to the Hamiltonian description.
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instance, Lorentz symmetry in relativistic systems. The problem in quantizing directly in

such formalism is that one would need to rely on path integral quantization. This can be

avoided if we move into Hamiltonian description of the system, where the Hamiltonian has a

clear physical interpretation and can be used to quantize a theory easily. In a non-relativistic

theory, this generates the usual Schrodinger equation for the wave function. Because we

want to do a canonical quantization in some sense we will need the Hamiltonian description

of the system. So let's describe the path from Lagrangian to Hamiltonian mechanics.

The heart of this process is to trade n second order di�erential equations for 2N �rst order

di�erential equations. The �rst step is to de�ne the canonical momentum {pi}, such that we
can do a Legendre transformation using them(trade all the q̇ dependence for this momentum

p):

pi =
∂L

∂q̇i
(1.9)

This choice can be justi�ed by looking for the total di�erential of the Lagrangian:

dL =
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i +

∂L

∂t
dt (1.10)

One can re-write this as:

d

(
∂L

∂q̇i
dq̇i − L

)
= −∂L

∂t
dt− ∂L

∂qi
dqi + q̇id

(
∂L

∂q̇i

)
(1.11)

Now we de�ne the Hamiltonian as:

H =
∂L

∂q̇i
dq̇i − L (1.12)

This give us the total di�erential of the Hamiltonian H:

dH = −∂L
∂t

dt− ∂L

∂qi
dqi + q̇idpi (1.13)

The interesting thing now is that we can interpret the Hamiltonian as a function of

(qi, pi, t) instead of the usual (qi, q̇i, t) in the Lagrangian description. If we can invert all

velocities in terms of canonical momentum this map is straightforward, we call such systems

non-singular. The Hamilton equations of motion are:

∂H

∂t
= −∂L

∂t
(1.14)

∂H

∂qi
= − ∂L

∂qi
(1.15)

∂H

∂pi
= q̇i (1.16)
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Using the Euler-Lagrange equations on the (1.15) we can write the Hamilton equations

in a more familiar form:

∂H

∂t
= −∂L

∂t
(1.17)

∂H

∂qi
= −ṗi (1.18)

∂H

∂pi
= q̇i (1.19)

For what will follow we need to introduce another important object that plays a major

role in the Hamiltonian description, the Poisson Bracket between two phase space functions:

{F,G} =
∂F

∂qi
∂G

∂pi
− ∂G

∂qi
∂F

∂pi
(1.20)

This is a explicit form for the Poisson bracket in a speci�c set of coordinates (Darboux

Coordinates)2. This Poisson bracket has some nice proprieties:

• Antisymmetry: {F,G} = −{G,F}.

• Linearity(In both slots): For z1,z2 constants ∈ C, {z1F1 + z2F2, G} = z1{F1, G} +

z2{F2, G}.

• Null element: For z1 constant, {z1, F1} = 0.

• Jacobi identity: {A, {B,C}}+ {C, {A,B}}+ {B, {C,A}} = 0.

• Leibniz's rule(In both slots): {A,BC} = {A,B}C +B{A,C}

Using the Poisson bracket we can write the time evolution as:

d

dt
= {_, H}+

∂

∂t
(1.21)

So the equations of motions are:

q̇i = {qi, H} (1.22)

ṗi = {pi, H} (1.23)

So if we derive a Hamiltonian we can �nd its equations of motion and then solve

it uniquely given a set of boundary conditions. The fun begins when we try to treat

2Transformations that preserves this form are called canonical transformations and plays a important

role in classical physics.
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constrained systems, we saw that for the Hamiltonian to exist and be unique one need to

invert the momentum:

pi =
∂L

∂q̇i
(1.24)

Such that:

q̇i = q̇i(q, p, t) (1.25)

However there is a catch, only in regular systems one can solve uniquely for q̇i. The

restriction that demands (1.25) to be true is:

det

(
∂pi
∂q̇j

)
= det

(
∂2L

∂q̇j∂q̇i

)
= det(Rij) 6= 0 (1.26)

If this holds it is possible to write a unique solution for q̇i = q̇i(q, p, t). Then what

follows is that the map from Lagrangian and Hamiltonian formulation has no obstruction.

Meanwhile, if this determinant is zero then the system is singular and this means that we

have a constraint. Not all the coordinates and velocities are independent, it exists a relation

between them at any instance of time:

C(qi, q̇i, t) = 0 (1.27)

It is important to point out that the singular characteristic is independent of coordinate

choice and can't be gone by a rede�nition of the Lagrangian by a total derivative. This

matrix (1.26) appears in the equation of motion multiplying the acceleration, this means

that in a singular theory the acceleration is not uniquely determined by the position and

velocities and the solutions may have arbitrary functions of time as we will see. To see

the relation between singular theories we can write the total time derivative in the Euler

Lagrange equation as:

d

dt
= q̇j

∂

∂qj
+ q̈j

∂

∂q̇j
+
∂

∂t
(1.28)

Then It is easy to cast in the form:

q̈j
∂2L

∂q̇j∂q̇i
=
∂L

∂qi
− q̇j ∂2L

∂qj∂q̇i
− ∂2L

∂t∂q̇i
= Ui(q, q̇, t) (1.29)

If the determinant of Rij is zero, exists at least one zero mode with eigenvector ξi3.

Contracting the Euler Lagrange equations with these eigenvector we obtain:

ξiUi(q, q̇) = C(qi, q̇i, t) = 0 (1.30)

This is a constraint, it is a relation between the position and velocities that are true

in every instant of time. The constraint here is appearing in the Lagrangian formalism, to

3The determinant is the product of the eigenvalues so at least one eigenvalue is zero and we would have

Rijξ
j = 0.
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have a nice geometrical interpretation and the easy possibility to quantize the system let's

see how this appears in the Hamiltonian formalism (Let's work only with time independent

systems). In there the constraints relate momentum and coordinates as:

C(qi, pi) = 0 (1.31)

This means that the Hamiltonian is not uniquely determined, before we see how to deal

with this there is a additional thing that need to be noticed. Because of the proprieties of

the Hamiltonian dynamics any phase space function can be treated like a "Hamiltonian"4,

having a associated vector �eld and integral lines (Giving a preferred direction on phase

space):

dqi

dλf
= {qi, f} (1.32)

dpi
dλf

= {pi, f} (1.33)

For a conserved quantity I we can do the same:

dI

dt
= 0 = {H, I} = −{I,H} (1.34)

So it is clear to see that a constraint is a conserved quantity in some sense, as is valid

at all times. The same argument tells us that they de�ne a symmetry in phase space and

generate a corresponding �ow as we will see.

The next step is to �nd a way to use the Hamiltonian formalism even with these

arbitrariness appearing because of the singular nature of the constraint. If we want that

we need to add additional objects called Lagrangian Multipliers. To see the need for this

we can look for a simple constrained Lagrangian:

L =
1

2
(q̇1 + q̇2)2 (1.35)

The momenta are:

p1 = q̇1 + q̇2 (1.36)

p2 = q̇1 + q̇2 (1.37)

This system has a constraint:

p1 − p2 = 0 (1.38)

The impossibility for the inversion can be seen in Figure 2. A entire line on (q̇1, q̇2)

plane goes into a point in the (p1, p2) plane trough the map.

4This can be seen in more details in the Appendix A
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Figure 2. Map from velocity to momentum in a speci�c case where p1 = 3

We can see already in this system how strange are constrained theories. If we get the

Euler-Lagrange equations of motion for this Lagrangian we arrive at:

q̈1 + q̈2 = 0 (1.39)

If we �x the boundary conditions to be:

q1(0) = q2(0) = 0 (1.40)

q̇1(0) = q̇2(0) =
v

2
(1.41)

Then it is clear that one solution for this equation is:

q1(t) =
vt

2
(1.42)

q2(t) =
vt

2
(1.43)

This solution is what we would expect for two free particles as we can see in the Figure

3.

However, there is more freedom than that in this equation of motion. Under the same

boundary conditions we could have solutions like shown in the Figure 4

q1(t) =
vt

2
+
gt2

2
(1.44)

q2(t) =
vt

2
− gt2

2
(1.45)

In this case the particles appear to accelerate in opposite direction. We could even get

crazier things like a oscillatory behavior in Figure 5:
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Figure 3. Plot of the solution without any arbitrary function of time.

Figure 4. Plot of the solution with a aceleration term.

q1(t) =
vt

2
+ sin(ωt) (1.46)

q2(t) =
vt

2
− sin(ωt) (1.47)
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Figure 5. Plot of the solution with a oscilatory term.

In this simple system, we already see the strange nature of a constrained dynamics.

We will learn how to deal with such ambiguities ahead but �rst, we will need to introduce

the concept of Lagrange multiplier.

1.3 Lagrange multiplier

The need for adding more objects in the theory can be justi�ed as trying to transform

the map into a one to one correspondence. We will insert a new object such that the

map became one to one in the new plane de�ned by (p, λ). Starting in a system with m

constraints CA, the prescription is to add to the Hamiltonian:

HT = H + λ(t)ACA (1.48)

Because our system should evolve only on the constraint surface inside the phase space

this addition will not change the equations of motion at this surface. The λ(t)A are the

Lagrange multiplier and there are 2 ways to move forward from this. The �rst one is to

enlarge the phase space and include this λA as coordinates and solve all the n+m equations.

The second one that we will use is to keep the λA arbitrary functions of time. In this case,

we have n equations of motion but they will depend on arbitrary functions of time. As a

consequence, the time evolution will not be unique as we saw in the earlier example. This

is not a problem because we can connect all the endpoints of the trajectory, there will be

a �ow moving through them generated by the constraint. This �ow does not change the

dynamics and we can identify all the orbits as physically equivalent. This prescription is

equivalent in the Lagrangian formalism, as one understands the Lagrangian multiplier as a
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way to extremize a function subject to a set of constraints:

LT = L− λ(t)ACA (1.49)

We will work in Hamiltonian formalism because we want to quantize the theory, in the

end, using the canonical formalism. Because we will work in Hamiltonian formalism we

will need to deal with Poisson brackets, there is a problem when one computes the Poisson

bracket using the constraint �rst. It is nicer if we introduce a new notation to talk about

things o� the constraint surface, just in like the way that we use o�-shell quantities in the

action formalism.

1.4 Weak and Strong equality

It is clear in equation (1.48) that we are working with quantities that when the equation of

motion is used the constraint became satis�ed. This o�-shell nature makes the computation

of Poisson bracket a little strange. A naive computation of a Poisson bracket using the

constraint �rst would give the wrong result, as it would vanish with anything. To make

life simpler it was proposed to de�ne the weak equality, something that is only equal in the

constraint surface:

f(q, p) ≈ g(q, p) (1.50)

This means that the di�erence between the functions is:

f(q, p)− g(q, p) = θACA (1.51)

We transform that into strong equality when the constraints are used in this case

the functions became equal. So we will use weak equality just to keep all the constraint

dependence in the functions of the phase space. Then we actually write the total Hamiltonian

as:

HT ≈ H + λ(t)ACA (1.52)

Keeping in mind to only use the constraint at the end of the calculation. Using this

notation, we can start to analyze the types of constraints.

1.5 Classi�cation of Constrains

When you have a physical system with a set of constraints CA, we call them primary

constraints. Now this set of constraints need to be preserved by time evolution, as discussed

before the interpretation of constraint as a conserved quantity. This is not always the case:

{CA, HT } ≈ fθAGθ (1.53)

Gθ 6≈ 0 (1.54)

To make the constraint consistent with time evolution we need to pick this new set

of functions and use as constraints so the equation (1.53) became zero trivially. This set
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of new constraints are called secondary constraints. This consistency check needs to go

all the way until you exhaust them. Any new constraint generated by the imposition of

the secondary constraint will be called secondary as well. Using this process there are 3

di�erent results that could happen. First is that you arrive in:

0 = 0 (1.55)

And nothing needs to be done. The second one is when you get a new function of

(qi, pi) as expressed by Gθ, independent of the others constraints. The procedure as cited

above is to use this expression as a new set of constraints. The last possibility is that you

impose a condition in the Lagrange multiplier λ. This means that not all the Lagrange

multiplier are free. When you make all the consistency check you should end up with a set

of primary and secondary constraints:

CA , A = 1, ..., n+m = k (1.56)

This set of k constraints can be treated together as the distinction of primary and

secondary is arbitrary. An important di�erence in the constraints will arise if their Lagrange

multiplier is determined or not. To understand this a little deeper, a consistency condition

that �xes λ would be something like:

{CA, H}+ λB{CA, CB} ≈ 0 (1.57)

If this equation �xes λ as functions of (q, p) then:

λA = ΦA(q, p) (1.58)

But this solution is not unique as we can add the homogeneous solution to this:

σB{CA, CB} = 0 (1.59)

Then the most general solution for the Lagrange multiplier is:

λA = ΦA + ξmσ
mA (1.60)

Here we write the most general linear independent combination of homogeneous solutions.

With this λ �xed we can go back to the initial Hamiltonian and use (1.60):

HT ≈ H + ΦACA + ξmσ
mACA (1.61)

Writing the Hamiltonian as:

HT ≈ H ′ + σmCm (1.62)

Where:

H ′ = H + ΦACA (1.63)
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Cm = ΣmACA (1.64)

This has an interesting consequence, we started with arbitrary Lagrange multipliers

but turned out that not all of them were arbitrary. After we deal with them there still

some arbitrary Lagrange multipliers related to the homogeneous solution. It is possible

then to de�ne 2 kinds of constraints. When you have a constraint C, if the Poisson bracket

with all others constraints is weakly zero this is called a �rst class constraint:

{C,CA} ≈ 0 (1.65)

If the constraint is �rst class we will use indexes m,n,p. Otherwise, the constraint is

called second class and we will use indexes α, β, γ. This distinction is important as they

play very di�erent physical roles. The number of independent functions of time appearing

in the total Hamiltonian is equal to the number of �rst class constraints. In a more High

Energy terminology, one can say that �rst class constraints are gauge redundancy and the

constraint generate a gauge transformation. The next lecture we will investigate deeper

this statement and the two types of constraints and how to deal with them classically.
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2 Lecture II

2.1 First class constraint

Lets work out a case where we have only �rst class constraints, this means that under the

set of constraints Cm, all of them:

{Cm, Cn} ≈ 0 = fpmnCp (2.1)

As said before when writing the Hamiltonian we would have something like:

HT ≈ H + λ(t)mCm (2.2)

All of the Lagrange multipliers would be indeed arbitrary. This means that the time

evolution is not uniquely �xed by the initial conditions:

Figure 6. Evolution of a system with �rst class constraint depending on the choice in t = 0 of the

arbitrary function.

This is not a problem because a physical observable does not depend on these arbitrary

functions. For gauge-invariant (physically measurable quantities) quantities, all of the

Hamiltonian should give the same time evolution, since they are all weakly equivalent. It

is only for non-gauge-invariant quantities that the distinction becomes important. Having

arbitrary functions of time λm(t) in the total Hamiltonian gives us the hint that not all

phase space coordinates are observable. This means that a physical state can be determined

uniquely once a set of phase space coordinates is given but one can't reconstruct the physical

state from the coordinate information alone. There is more than one set of variables
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representing a chosen physical state. In classical mechanics, it is expected that given an

initial set of phase space coordinates at a time t0 we can use the equations of motion to

determine the physical state at other times. This deterministic nature makes us understand

that any ambiguity in this process can't be physically relevant. In an instant of time t the

variables will depend on the choice of the arbitrary functions λ. We can look for the

di�erence of the evolution from a phase space function with a selected λ at the time t0, Fλ
and a di�erent function λ′, Fλ′ . The time evolution of F is in general of the form:

Ḟ = {F,H0}+ λm{F,Cm} (2.3)

In a in�nitesimal time interval we have:

Fλ(t) = F (t0) +
dF

dt
|t=t0(t− t0) + ... (2.4)

Using the time evolution one has:

dFλ
dt
|t=t0 = {F (t0), H0}+ λm(t0){F (t0), Cm} (2.5)

Then the di�erence between the phase space function at the time t from di�erent

functions is:

Fλ − Fλ′ = (t− t0)(λm(t0)− λ′m(t0)){F (t0), Cm} (2.6)

We can write this as

δεF = εm(t){F,Cm} (2.7)

Where we identi�ed:

εm(t) = (t− t0)(λm(t0)− λ′m(t0)) (2.8)

Because of the arguments above this transformation does not change physical sate at

the time t. Such a transformation is called gauge transformation. This gives us that �rst

class constraint generate gauge transformation. We can see if this transformations form a

algebra:

[δε, δµ]F = {{εmCm, µnCn}, F} (2.9)

Because these are �rst class constraints one has:

{εmCm, µnCn} = εmµnfpmnCp (2.10)

So we can see that the algebra closes because:

θp = εmµnfpmn (2.11)

[δε, δµ]F = δθF (2.12)
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This is true even if the structure constants depend on the Phase Space variables. In

general, is not possible to prove that every �rst class constraint generates gauge transformation(Dirac

Conjecture states that every secondary �rst class constraint generates gauge transformation.)5.

Nevertheless for what follows one can assume that. For all physical applications so far this

is true and it is not know how to quantize a theory if it is not the case. Just a �nal reminder

these considerations were made by identifying the time t as an observable. If one work with

reparametrization invariant theory we have to be more careful as we will see in the Lecture

4.

The constraint algebra generates a �ow linking all of the equivalent solutions and in

this point, we could do two things. The �rst is choose a representative in each orbit and do

calculations remembering that the physics is invariant under the choice of representative.

This process is in the heart of gauge �xing as we will see in a moment. The second one is

to treat your system without gauge �xing and �nd gauge invariant objects that describe

the system:

{A(q, p), Cm} ≈ 0 (2.13)

This objects will be invariant under gauge transformations and can be used as observable.

The �rst one is usually used in classical physics and the second one not so much. Going

to quantum mechanics the �rst one became a little trickier and sometimes the second is

easier, as we will discuss when we quantize the system. Now let's analyze the second class

constraint case and after discuss the role of the action in this formalism.

2.2 Second class constraint

We already saw that if a constraint has a weakly non vanishing bracket with the others

constraints they are second class:

{C2
α, C

2
β} 6= 0 (2.14)

It is possible that inside a set of constraints CA such that:

det({CA, CA}) ≈ 0 (2.15)

That in a �rst glance is �rst class but inside them could exist a sub-set of second class

constraints:

{C2
α, C

2
β} 6= 0 (2.16)

Such that:

det
(
{C2

α, C
2
β}
)
6= 0 (2.17)

5In fact it is know examples of systems where this is not the case like: L = 1
2
eyẋ2.
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It is always possible to separate them by changing the basis such that the matrix reads

weakly as:

{CA, CB} ≈

[
0 0

0 Λαβ

]
(2.18)

Where the �rst entry are the �rst class constraint C1
m and the second entry are the

second class C2
α. It should be noted that you could lose the manifestation of some symmetry

in this process. This separation is not unique as it is preserved by the rede�nition's:

C1
m → Θn

mC
1
n (2.19)

C2
α → Θβ

αC
2
β + Θm

α C
1
m (2.20)

Given that all Θ`s are invertible matrices. We will assume that the matrix Λαβ is

invertible everywhere in the surface of the second class constraint C2
α = 0, not needing the

full set of constraints. This will be necessary to deal with second class constraint. Di�erent

from �rst class constraint, these constraints cannot be interpreted as gauge generators. In

fact, they are not generators of any physical transformation. If this is not the case, how we

treat second class constraints? To answers this question we can look for a simpli�ed system

that has this propriety. Consider a system with a set of constraints:

C2
1 = q1 = 0 (2.21)

C2
2 = p1 = 0 (2.22)

They are indeed second class:

{C2
1 , C

2
2} = 1 (2.23)

It is straightforward what to do in this case. The constraints tell us that (q1, p1) are

not important and we can just discard them. The Poisson bracket get modi�ed such that:

{F,G}DB =

n∑
2

(
∂F

∂qi
∂G

∂pi
− ∂G

∂qi
∂F

∂pi

)
(2.24)

This new bracket respects the constraint and its evolution. Most important the bracket

between a constraint and any phase space function is strongly zero. This gives us a hint that

if we work using these brackets one can use only strong equality and set the constraints to

zero. The equation of motion of the remaining variables are the same using this new bracket

and it has all the nice proprieties that one expect of a Poisson bracket. Using this expertise

it is possible to generalize this concept for an arbitrary set of second class constraints, as

was done by Dirac. He realized that given a subspace of second class constraint that has

an invertible matrix:

Λ−1.Λ = I (2.25)
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We can de�ne a modi�ed bracket:

{F,G}DB = {F,G} − {F,C2
α}(Λ−1)αβ{C2

β, G} (2.26)

This is called Dirac Bracket and has all the important proprieties that a Poisson bracket

needs to have while enforcing the second class constraints:

• Antisymmetry: {F,G}DB = −{G,F}DB.

• Linearity(In both slots): For z1,z2 constants ∈ C, {z1F1+z2F2, G}DB = z1{F1, G}DB+

z2{F2, G}DB.

• Null element: For z1 constant, {z1, F1}DB = 0.

• Jacobi identity: {A, {B,C}DB}DB + {C, {A,B}DB}DB + {B, {C,A}DB}DB = 0.

• Leibniz's rule(In both slots): {A,BC}DB = {A,B}DBC +B{A,C}DB

• Enforces all the second class constraints: {C2
α, F}DB = 0 for any F (q, p)

• For a �rst class function its Poisson: {C1
m, F}DB ≈ {C1

m, F}

• For F and G �rst class functions: {R, {F,G}DB}DB ≈ {R, {F,G}}

In a geometrical formulation, this bracket is the symplectic form on the constrained

surface and dictates the dynamics pairing with the Hamiltonian. If one can construct such

a bracket then the treatment of the constraint is easy, just set them to be strongly zero and

work with the Dirac Brackets. Because the extended Hamiltonian is �rst class it still gives

the right equation of motion:

Ḟ ≈ {F,HE} ≈ {F,HE}DB (2.27)

It is possible to work with only Dirac brackets even if there is a �rst class constraint

subset. The main problem is that even that all the constraint information is inside the

Dirac bracket it is not always easy to �nd its explicit form. Even harder when going to

quantum mechanics as one needs to �nd a realization of such a bracket. Because of that,

it is normal to want to deal with second class constraints in di�erent ways that bypass this

formulation. The only known method is to add an additional degree of freedom in a way

that you see the system as a �rst class constraint and recover the system by a gauge �xing.

Before doing that let's just see the role of the Lagrange multipliers in the case of second

class constraint. Consider now a system with a second class constraint, in such a system

the Lagrange multipliers are all determined by the relation used in the example above:

λα ≈ −Λαβ{Cβ, H} (2.28)

This means that we can substitute back this solution on the �rst Hamiltonian and our

coordinates will give the right physical description:

HT ≈ H − CαΛαβ{Cβ, H} (2.29)

This expression can be a mess and it is recommended to go through the Dirac Bracket

route as one can use the constraints from the start.
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2.3 Gauge Fixing

Studying �rst class constraint and the gauge freedom associated with it made clear that

there is more than one set of canonical variables that correspond to a chosen physical

state. This ambiguity can be used to our advantage to describe the system in a clever

way. Sometimes this ambiguity can be a pain to deal with, having too much more variables

than needed obscuring the physical system. Thinking in this manner one can get rid of

this ambiguity in a consistent manner if we impose further restrictions on the system in a

way that there is a one-to-one correspondence between a state and the canonical variables.

We already know that the physics is invariant under the choice of representative, in other

words, the choice of λm. The gauge condition is just a way to avoid overcount of a state,

because of this nature, it is a thing coming from outside the theory. We are allowed to do

that as we only remove the non-observable arbitrary elements of the theory and don't a�ect

the gauge invariant objects. In a �rst glance the gauge condition could be any function of

the phase space, one for each �rst class constraint:

Gm(q, p) ≈ 0 (2.30)

However, a good gauge condition needs to satisfy some conditions:

• The gauge must be accessible: Given a set of canonical variables, there must exist a

gauge transformation that maps then into one that satis�es the gauge �xing. This

means that given a gauge slice:

Gm(q, p) = 0 (2.31)

If a set of coordinates (q′, p′) does not respect this condition we should be able to �nd

a set (q, p) that does it. Then we should be able to �nd a gauge transformation that

takes the coordinates to the gauge surface

Gm(δεq
′, δεp

′) = 0 (2.32)

• The condition must �x the gauge completely. This means that:

λm{Gn, Cm} ≈ 0 (2.33)

Must imply:

λm ≈ 0 (2.34)

These conditions guarantee that the set of �rst class constraints with gauge conditions

are now second class and the gauge �xing don't change the physics. In the end, there

is no �rst class constraint left and one can treat the system as a second class one with

the associated Dirac Brackets. We can have a geometrical interpretation, the gauge �xing

surface:

Gm(q, p) = 0 (2.35)
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Should intersect the gauge orbits, which lie in the constraint surface only once. The

following condition guarantees this locally:

det({Gm, Cn}) 6= 0 (2.36)

Figure 7. Representation of gauge orbits and a good gauge �xing.

This does not guarantee that this is respect globally. The geometry of the constraint

surface could forbid the existence of a global gauge condition. This is known as the Gribov

problem, and for example, a�ects linear covariant gauges in non-abelian Yang-Mills theories.

This is one reason that developing a theory of �rst class constraint without gauge �xing is

interesting.

This description of gauge �xing a �rst class constraint system and transforming into a

second class gives us the possibility to treat second class constraints di�erently. One could

try to �nd an enlarged system that when gauge �xed gives us the second class constraint

one. Then we treat directly the �rst class constraint without gauge �xing and avoiding the

Dirac Bracket. This process can always be done but the removal of second class constraint

is not unique and could spoil some manifest symmetry. Just to see an example, the second

class constraint system talked before:

q1 ≈ 0 (2.37)

p1 ≈ 0 (2.38)

Can be seen as the �rst class constraint system:

p1 ≈ 0 (2.39)
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Figure 8. Representation of gauge orbits and a bad gauge �xing.

With the gauge transformation:

q1 → q1 + λ (2.40)

And gauge �xing:

q1 ≈ 0 (2.41)

The advantage of this method is not having to deal with Dirac Bracket. When going

to quantum mechanics this can be a huge advantage.

Before we �nish and work some classical examples lets see how the count of degree of

freedom goes in a theory with constraint. Since after the gauge �xing there are no more

redundancy lefts we have:

2× (Number of Physical degrees of freedom) = (Number of independent canonical variables) =

(2.42)

= (Total Number of canonical variables)− (Number of second class constraints)−

−(Number of �rst class constraints)− (Number of gauge �xing)

We can write in the compact form:

2× (Number of Physical degrees of freedom) = (Total Number of canonical variables)−
(2.43)
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−(Number of second class constraints)− 2(Number of �rst class constraints) (2.44)

This relation is well de�ned and always holds for systems with �nite degrees of freedom.

Turns out that can exist complications on the case of in�nite degrees of freedom. Going to

the continuum we need to be careful as to how arbitrary the Lagrange multipliers can be

in the �rst class case, they appear in the Hamiltonian as:∫
ddxλm(x, t)C1

m(x) (2.45)

The only assumption is that the transformation generated by the constraint is a gauge

transformation:

δF =

∫
ddxλm(x, t){F,C1

m(x)} (2.46)

However, this has no general solution and we need to work case by case. Depending on

the nature of λ it is not guaranteed that this transformation does not change the physical

states. Normally the most general λ need to be such that:∫
ddxλm(x, t)C1

m(x) ≈ 0 (2.47)

Implies

C1
m(x) ≈ 0 (2.48)

For instance, a gauge �eld that vanishes at in�nite, if one uses a λ that is constant at

in�nity it will give rise to an overall charge rotation. Invariance under these transformations

selects zero total charge states. This tells us that the total charge became a new constraint

of the system which generates its own new gauge invariance. They may, for instance,

exist transformations that are not continuously connected to the identity (Large gauge

transformations). They again map goods states into good states but seeing them as proper

gauge transformations amount to an additional assumption. This will not be a problem in

the cases worked here but is good to be known. The last thing that we will work out in

this lecture, before the examples, is how to relate these �rst class constraints to the gauge

symmetry of the Lagrangian formalism, more speci�cally, the action.

2.4 Gauge invariance of the action

In the start of the treatment of constraint we stated with the action on �rst order formalism:

SL =

∫
dt L =

∫
dt
(
q̇ipi −H

)
(2.49)

The impossibility to construct the Hamiltonian made us use the Lagrange multiplier,

the action then became:

SL ≈
∫

dt
(
q̇ipi −H0 − λACA

)
(2.50)
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This action has the same gauge symmetries from the Lagrangian formalism. However,

doing the consistency check for the constraint we saw that there is more constraint than

initially enforced, this made us add those secondary constraints in the same way that we

did the �rst one. In this step the equations of motion changes, but we can't distinguish this

because of the redundancy of the equations. This process of add the secondary constraints

create new gauge symmetries, this can be seen as we can always change the additional

Lagrange multipliers. As it is expected more arbitrary multiplier implies more gauge

symmetry. This is what we will call extended action:

SE ≈
∫

dt
(
q̇ipi −H0 − λACA − λθsecondaryC

secondary
θ

)
(2.51)

Lets work out a little more the most general case. We will see that the Lagrange

multipliers need to transform in order to render the action invariant and sometimes we can

use theses transformations to �nd the algebra between the constraints. For now we will

work with the primary and secondary constraint together only di�erentiating between �rst

class and second one:

SE ≈
∫

dt
(
q̇ipi −H0 − λm1 C1

m − λα2C2
α

)
(2.52)

The gauge transformations are:

δε ≡ εm(t){_, C1
m} (2.53)

δεq
i ≈ εm(t){qi, C1

m} = εi(t)
∂C1

m

∂pi
(2.54)

δεpi ≈ εm(t){pi, C1
m} = −εm(t)

∂C1
m

∂qi
(2.55)

The most general algebra that can happen is:

{C1
m, C

1
n} ≈ fpmnC1

p + gαβmnC
2
αC

2
β (2.56)

{C1
m, C

2
α} ≈ hnmαC1

n + uβmαC
2
β (2.57)

{C2
α, C

2
β} ≈ Kαβ (2.58)

{C1
m, H0} ≈ dnmC1

n + eαβm C2
αC

2
β (2.59)

{C2
α, H0} ≈ rmα C1

m + tβαC
2
β (2.60)
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With eαβm and gαβmn symmetric in the α,β. The second class constraint appears only

quadratic in the �rst and third relation because the bracket of two �rst class constraint is

�rst class as well. And of course:

detKαβ 6= 0 (2.61)

We could get rid of the second class constraint using the Dirac bracket, this would

change the relations, simplifying its form:

{C1
m, C

1
n}DB = f̃pmnC

1
p + g̃αβmnC

2
αC

2
β (2.62)

{C1
m, C

2
α}DB = 0 (2.63)

{C2
α, C

2
β}DB = 0 (2.64)

{C1
m, H0}DB = d̃nmC

1
n + ẽαβm C2

αC
2
β (2.65)

{C2
α, H0}DB = 0 (2.66)

Now we can analyze what are the transformations of the Lagrange multipliers such that

the extended action is invariant:

δεSE = 0 =

∫
dt
(
δε(q̇

ipi)− δεH0 − (δελ
m
1 )C1

m − λm1 (δεC
1
m)− (δελ

α
2 )C2

α − λα2 (δεC
2
α)
)

(2.67)

The �rst one give rise to a boundary term plus a extra:

δε(q̇
ipi) =

d

dt
(δεq

i)pi + q̇iδεpi =
d

dt
(δεq

ipi)− δεqiṗi + q̇iδεpi (2.68)

Using the transformation of the canonical variables and remembering that ε has time

dependence we can write:

δε(q̇
ipi) =

d

dt

(
ε(t)m(

∂C1
m

∂pi
pi − C1

m)

)
+ ε̇mC1

m (2.69)

The rest of the transformations are straightforward and one can conclude the transformations

of the Legendre multipliers as:

δελ
m
1 = ε̇m + λn1 ε

lfmnl + λα2 ε
lhmαl − εndmn (2.70)

δελ
α
2 = λm1 ε

ngαβmnC
2
β + λβ2 ε

muαmβ − εmeαβm C2
β (2.71)

Where the boundary term is said to be zero by appropriate boundary conditions of

the gauge transformation. This can be used to �nd the coe�cients if one knows the

transformation of the Lagrange multipliers, that can be guessed by geometrical means.
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If we want to recover the gauge symmetries from the initial Lagrangian we just need to

gauge �x these additional symmetries:

λθsecondary = 0 (2.72)

In such a way that:

δλθsecondary = 0 (2.73)

In this sense, the gauge symmetry in the Lagrangian formalism is the residual gauge

symmetry of the extended action from the Hamiltonian formalism. We need to be careful

when comparing the Lagrangian and Hamiltonian formalism. In the end, both formalisms

give the same observables and answers but in the middle things are di�erent.

2.5 Example First Class Constraint: Gauge redundancy

The case that we will work out is the following:

L =
m

2
(q̇1 + q̇2)2 − V (q1 + q2) (2.74)

This system is good to illustrate what sometimes is possible to do with constrained

systems. We already saw in the last lecture that the solutions for the equation of motion

are not unique in this case. It is easy to see that if we go to the center of mass coordinate

this would be a simple particle moving in a potential. This coordinate is what is called

unconstrained variable. We could solve the constraint in some sense only by an appropriate

choice of coordinates. If one �nds such coordinate then they can proceed normally describing

the system. For the sake of understanding a little better �rst class constraint, let's ignore

this change and work out the Hamiltonian formulation. The canonical momentum in this

case are:

p1 = m(q̇1 + q̇2) (2.75)

p2 = m(q̇1 + q̇2) (2.76)

Its straightforward to see that we have a constraint:

C = p2 − p1 (2.77)

And the Hamiltonian can be written as:

H ≈ p1q̇1 + p2q̇2 − L (2.78)

H ≈ p2
1

2m
+ q̇2(p2 − p1) + V (q1 + q2) (2.79)

We can see that q̇2 plays the role of the Lagrange multiplier. The Hamiltonian is written

then as:

HT ≈
p2

1

2m
+ V (q1 + q2) + λ(p2 − p1) (2.80)
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It is clear that this constraint is �rst class and does not generate any other constraint

when we go trough consistency condition:

{p2 − p1, p2 − p1} = 0 (2.81)

And for the time evolution:

{ p
2
1

2m
+ V (q1 + q2) + λ(p2 − p1), p2 − p1} = 0 (2.82)

Because V does not depend on the di�erence of position. It is clear in this example the

nature of �rst class constraint, they are redundancy in our description. There is a particle

in one dimension whose position is (q1 + q2), but it has some internal degree of freedom

which can be seen as (q2 − q1). The time evolution of this degree of freedom is arbitrary.

Logically to have a deterministic classical theory we have to assume that this degree of

freedom is nonphysical, and consequentially cannot be measured. Two states, which can

evolve out of a single state in this way must be declared to be physically equivalent, and

a transformation that link these states is called a gauge transformation. It is important

to note that this redundancy does not come out because we didn't impose enough initial

conditions. Lets see the gauge orbits of this case and some gauge invariant objects. The

time evolution can be computed from the total Hamiltonian:

q̇1 ≈ {q1, HT } =
p1

m
− λ (2.83)

q̇2 ≈ {q2, HT } = λ (2.84)

ṗ1 ≈ {p1, HT } = −∂V (q1 + q2)

∂q1
(2.85)

ṗ2 ≈ {p2, HT } = −∂V (q1 + q2)

∂q2
= −∂V (q1 + q2)

∂q1
(2.86)

We can see that the evolution of (q1, q2) has the arbitrary function of time, while

the momentum don't. The momentum are gauge invariant in this case as one can verify.

Because of the nature of the constraint it is easy to construct another gauge invariant

object:

O1 = q1 + q2 (2.87)

O2 = p1 + p2 (2.88)

In such a way that:

Ȯ1 =
p1

m
=
p1 + p2

2m
=
O2

2m
(2.89)
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Ȯ2 = −2
∂V

∂q1
=
∂V (O1)

∂O1
(2.90)

The gauge transformations are:

δq1 = −λ (2.91)

δq2 = λ (2.92)

δp1 = 0 (2.93)

δp2 = 0 (2.94)

Let's see a example of gauge �xing in this case, we need a function of phase space such

that:

{p2 − p1, f} ≈ G 6= 0 (2.95)

We could choose for instance:

f = q2 −A , A ∈ R (2.96)

This gauge �xing commute with the potential and does not generate any new constraint.

Lets work this gauges:

HT ≈
p2

1

2m
+ V (q1 + q2) + λ1(p2 − p1) + λ2(q2 −A) (2.97)

Now under time evolution we don't get any new constrain and we get the commutation

between them as:

{(p2 − p1), (p2 − p1)} = 0 (2.98)

{(q2 −A), (q2 −A)} = 0 (2.99)

{(p2 − p1), (q2 −A)} = −1 (2.100)

In matrix form we have:

{Cα, Cβ} = K−1
αβ =

[
0 −1

1 0

]
(2.101)

The inverse is:

Kαβ =

[
0 1

−1 0

]
(2.102)
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Now the Lagrange multipliers are determinate:

λα ≈ −Kαβ{Cβ, H} (2.103)

This means that:

λ1 ≈ −{C2, H} (2.104)

λ2 ≈ {C1, H} (2.105)

Where:

H =
p2

1

2m
+ V (q1 + q2) (2.106)

And:

{C1, H} = 0 (2.107)

{C2, H} = 0 (2.108)

So both Lagrange multipliers are uniquely determined and are zero. The total Hamiltonian

can be written as:

H =
p2

1

2m
+ V (q1 +A) (2.109)

Now all constraints are used and this is what one naively would get by an appropriate

change of variables.

2.6 Example Second Class Constraint: Particle in a circle

Lets work the system moving on a surface of a circle:

L =
m

2
(q̇1

2 + q̇2
2) (2.110)

Going to the Hamiltonian formalism we could add the Lagrange multiplier from the

start and enlarge the phase space or use the technique described before. In this case lets

go to the Hamiltonian description without any barrier and force the constraints there:

HT ≈
p2

1

2m
+

p2
2

2m
+ λ(q2

1 + q2
2 − r2) (2.111)

Now lets see if the constraint is preserved trough time evolution:

{(q2
1 + q2

2 − r2),
p2

1

2m
+

p2
2

2m
} =

(q1p1 + q2p2)

m
(2.112)

This is not zero so by the consistency condition we need to include this as a new

constraint:

HT ≈
p2

1

2m
+

p2
2

2m
+ λ1(q2

1 + q2
2 − r2) + λ2(q1p1 + q2p2) (2.113)
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Now the �rst constraint is preserved trough time evolution, lets see what the second

one tells us:

{(q1p1 + q2p2),
p2

1

2m
+

p2
2

2m
+ λ1(q2

1 + q2
2 − r2)} =

p2
1

m
+
p2

2

m
− 2λ1(q2

1 + q2
2) (2.114)

This last one �xes λ1 to be consistent such that:

λ1 ≈ 1

2m

p2
1 + p2

2

q2
1 + q2

2

(2.115)

The evolution of the �rst constraint now that C2 was added with the new total

Hamiltonian will give:

{(q2
1 + q2

2 − r2),
p2

1

2m
+

p2
2

2m
+ λ2(q1p1 + q2p2)} =

(q1p1 + q2p2)

m
+ 2λ2(q2

1 + q2
2) (2.116)

This �xes the last Lagrange multiplier:

λ2 ≈ q1p1 + q2p2

2m(q2
1 + q2

2)
(2.117)

Our dynamic is now �xed and we can plug this back on the Hamiltonian:

HT =
p2

1

2m
+

p2
2

2m
+

1

2m

p2
1 + p2

2

q2
1 + q2

2

(q2
1 + q2

2 − r2) +
q1p1 + q2p2

m(q2
1 + q2

2)
(q1p1 + q2p2) (2.118)

And write the Hamiltonian as:

HT ≈
p2

1

2m
(1 +

q2
1 + q2

2 − r2

q2
1 + q2

2

+
2q2

1

q2
1 + q2

2

) +
p2

2

2m
(1 +

q2
1 + q2

2 − r2

q2
1 + q2

2

+
2q2

2

q2
1 + q2

2

) +
2q1q2p1p2

m(q2
1 + q2

2)

(2.119)

And a prior �nd the equations of motion. Of course this is ugly and for instance

the usage of Dirac bracket simpli�es a bit, because in this framework we only use strong

equality, the Hamiltonian would only be:

H =
p2

1

2m
+

p2
2

2m
(2.120)

But the bracket would be modi�ed to the Dirac ones:

Kαβ ≈

[
0 − 1

2(q21+q22)
1

2(q21+q22)
0

]
(2.121)

Starting from the set:

{q1, q2} = 0 (2.122)

{p1, p2} = 0 (2.123)
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{q1, p1} = 1 (2.124)

{q2, p2} = 1 (2.125)

{q1, p2} = 0 (2.126)

{q2, p1} = 0 (2.127)

We get:

{q1, q2}DB = 0 (2.128)

{p1, p2}DB = − 1

r2
(q1p2 − q2p1) (2.129)

{q1, p1}DB = 1− q2
1

r2
(2.130)

{q2, p2}DB = 1− q2
2

r2
(2.131)

{q1, p2}DB = −q1q2

r2
(2.132)

{q2, p1}DB = −q1q2

r2
(2.133)

For instance the equation of motion in the Dirac prescription became:

q̇1 = {q1, H}DB =
p1

m
(2.134)

q̇2 = {q2, H}DB =
p2

m
(2.135)

ṗ1 = {p1, H}DB =
p2

1 + p2
2

m
q1 (2.136)

ṗ2 = {p2, H}DB =
p2

1 + p2
2

m
q2 (2.137)

Sometimes its easier to work in a system with constraints on the constrained coordinate

instead of the unconstrained one. Sometimes it is not possible to �nd an unconstrained

coordinate at all. All the methods so far work �ne in classical physics, let's translate this in

the next lecture to quantum physics and see how to deal with the constraints in a systematic

manner.
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3 Lecture III.

3.1 Quantization

Now that we have a better grasp of classical mechanics and how to deal with constraints in

it lets try to quantize a classical theory. Here we end up in a problem really fast because

of the usual canonical quantization:

{A,B} → 1

i~
[Â, B̂] (3.1)

Does not exist in general. This problem is related to the fact that quantum mechanics

is more fundamental than classical mechanics. Because of that, it is impossible to describe

all quantum mechanics trough deformations of classical physics and such a map cannot

exist. The way to deal with that is to use such deformation quantization and get a family

of quantum theory that has the same classical limit, then see if any of them make sense

and what are the di�erences between them. Of course in such a method it is impossible

to arrive at a fundamentally quantum theory with no classical analog, for such a thing

there are other methods like S matrix analysis. Just to illustrate the impossibility of such a

quantization map one would want such a map Q that act on phase space functions g(q, p)

in such a way that:

• Q(g(q, p)) = Qg(q̂,p̂)

• Qq |ψ〉 = q |ψ〉

• Qp |ψ〉 = −i~ ∂
∂q |ψ〉

• g → Qg is linear

• [QA,QB] = i~Q{A,B}

• QA(B) = A(QB)

Not only are these four properties mutually inconsistent, but any three of them are

also inconsistent. For instance, if we accept the usual form for the position operator,

linearity and the commutator relation being of order ~ only asymptotically( ~→ 0), leads

to deformation quantization. The non-existence of a true map to quantize phase space

functions gives us the problem of ordering when going to quantum mechanics. This order

ambiguity is the fact that may exist multiple operators in Hilbert space that represent a

given phase space function in the classical limit. This means the quantum Hamiltonian isn't

uniquely determined by the classical limit, as one would expect. This ambiguity rises even

when we demand the operators to be Hermitian. This is not strange if one thinks that the

quantum Hamiltonian has all the information about the theory, including its classical limit.

This ordering ambiguity arises in quantum �eld theory as well. In that particular case, all

the ambiguity that arises is actually UV divergent. The way to surpass this problem is

actually rephrase what we want, we don't want a deformation of classical physics that is

consistent with quantum mechanics. We want a consistent quantum theory that could have
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a classical limit. From now one we will ignore the operator ordering issue6 and assume a

given quantum theory that is uniquely determined and maybe have others with a similar

classical limit. This will not be a problem in the parameterized particle but in general, is

something that one should need to �x (we will see that in the Bosonic String case). Now, in

an unconstrained system, the application of such quantization is �xed, we create a Hilbert

space and transform the phase space functions in operators(choosing an ordering). The

Hamiltonian is transformed in the operator of time evolution and its operator equation gives

the Schrodinger equation, all the operator equations are analog to the classical counterpart.

The time evolution is then:

Ȧ =
1

i~
[A,H] (3.2)

As operators, this should be acted on states. Let's see what would change when we

add constraints, assuming a set of second-class constraints Cα, one should then impose in

the states:

Ĉα |ψ〉 = 0 (3.3)

But notice that this would imply that:

[Ĉα, Ĉβ] |ψ〉 = 0 (3.4)

This should hold for all |ψ〉, trough the canonical quantization procedure this would

mean that the classical counterpart should follow:

{Cα, Cβ} = 0 (3.5)

However, because these are second class constraints they don't even vanish weakly, and

this is impossible to enforce such constraint. We need to be more careful when quantizing

constrained systems, let's go through the steps to make it in a consistent manner.

3.2 The road to the quantum realm.

Continuing to work with a second class constraint system we can remember the Dirac

bracket formalism where all the constraint are enforced and we can deal only with strong

equality. In such a bracket we indeed have:

{Cα, Cβ}DB = 0 (3.6)

Than this gives us a way to quantize our theory, the quantization map should be:

{A,B}DB →
1

i~
[A,B] (3.7)

This quantization scheme has the feature that the commutator of any phase space

function with the constraints are zero. Now to the interesting part, any operator that

6This ambiguity appears in quantum �eld theory in the form of ambiguities in the renormalization

schemes.
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commutes with every conceivable function of q̂ and p̂ cannot itself be a function of the

phase space operators. The only possibility is that the operator acts as a c-number in the

states:

Ĉα |ψ〉 = λcα |ψ〉 (3.8)

To satisfy the constraint we just need to assume that this eigenvalue is zero, this means

that:

Ĉα |ψ〉 = 0 (3.9)

Is not a constraint in the phase space but a operator identity:

Ĉα = 0 (3.10)

Doing the quantization with Dirac brackets, the second class constraints can be freely

set to zero in any state (of course the constraint information is inside the Dirac bracket).

Now one can easily quantize a theory with only second class constraints, it is just a matter

of �nding the Dirac bracket and then doing the quantization map. While the procedure is

simply stated, it is not so easily implemented.

In order to visualize this process we can revisit the second class constraint system that

we talked about:

q1 ≈ 0 (3.11)

p1 ≈ 0 (3.12)

We can see that going to quantum mechanics, the use of Poisson bracket would give

the wrong result:

[q̂1, p̂1] = i~ (3.13)

This acting on physical states would be inconsistent with:

q̂1 = 0 (3.14)

p̂1 = 0 (3.15)

But the Dirac Bracket would give the right answer:

[q̂1, p̂1] = i~{q̂1, p̂1}DB (3.16)

In this case, there is no order ambiguity and quantization proceeds in a smooth way.

One way to justify this process of quantizing using Dirac bracket is to solve classically the

constraint:

C2
α = 0 (3.17)
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For some variables zα, in terms of the rest of the variables xi:

zα = zα(xi) (3.18)

The bracket between the remaining variables would depend only in xi:

{xi, xj} = F ij(x) (3.19)

This matrix being invertible. The quantum theory is de�ning by �nding a representation

of this algebra for the operator x̂i:

[xi, xj ] = i~F ij(x̂) (3.20)

Once a solution is found we can go the other way and de�ne the operator ẑα as function

of x̂ with a �x ordering. This implies that:

Ĉ2
α = 0 (3.21)

We can see that to this quantization to work we need to �nd an explicit representation of

the Dirac Bracket (in this case the bracket of the remaining variables is the Dirac bracket).

This is a big problem with no general solution except for easier cases. In general, it is

impossible to �nd an explicit solution, even if we let high order corrections take place:

[Â, B̂] = i~{A,B}+O(~2) (3.22)

This is the main reason as to why see a second class constraint as a gauge �xed �rst

class constraint. Now we need to know how to deal with �rst class constraints. We will

work out some ways to handle �rst class constraint. The �rst one is the reduced phase space

that tries to quantize only gauge invariant objects. The second is the Dirac Procedure to

quantize �rst class constraints that are more powerful and has a nice physical interpretation.

The most advanced techniques revolve around generalizing the Dirac Procedure so in this

lecture we will work out more the Dirac way to have a better understanding of the �rst

class case. If you grasp the Dirac quantization the BRST is just a clever way to deal with

all the choices that one has to do in the quantization procedure. Working with the Dirac

Procedure will give us a better intuition when dealing with gauge theories that we have in

Physics.

3.3 Reduced phase space quantization.

Let's consider only �rst class constraint. In this case, it is possible to try to get rid of the

redundancy early one. It is possible to archive that if we only quantize gauge invariant

functions. This method is called reduced phase space quantization. To proceed with this

method it is necessary to have a complete set of gauge invariant functions that describe

the classical system. With this set, we try to �nd the quantum space as an irreducible

representation of the commutation relations of these functions. Every state in this Hilbert
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space would be physical by construction. One example in the case that we saw early one

would be:

L =
m

2
(q̇1 + q̇2)2 − V (q1 + q2) (3.23)

We worked out the complete set of gauge invariant functions as:

qcm = q1 + q2 (3.24)

pcm = p1 + p2 (3.25)

In the Schrodinger representation we would have:

q̂cm |Ψ〉 = qcm |Ψ〉 (3.26)

p̂cm |Ψ〉 = −i~ ∂

∂qcm
|Ψ〉 (3.27)

There is no gauge dependent objects in this space, gauge invariance is manifest. In

practice it is very hard to �nd a complete set of observable as this is equal to solve:

{F (q, p), C1
m} ≈ 0 (3.28)

It is possible to reach the reduced phase space by a di�erent approach that only works

when there is no Gribov problem. It consists on �xing the gauge classically:

Gm = 0 (3.29)

This works because any function can be view after the gauge �xing as the restriction in

that gauge of a gauge invariant function. After the gauge �xing, one is e�ectively working

with gauge invariant function. A complete set of independent gauge �xed functions provides

one with a complete set of gauge invariant objects. Now the quantization is identical to a

second class constraint one.

Both quantizations seem natural since we work only with gauge invariant objects.

The Hilbert space constructed has only physical states because of this. However, this

approach can be di�cult to implement, �nding a complete set of observable may be hard

and even spoil manifest invariance under some symmetry. In the case of �eld theory,

elimination of gauge degrees of freedom generally destroys locality. Finally, the bracket of

the observables could be impossible to render in a quantum mechanical setup. Because

of that, it is important to construct an alternative method of quantization of �rst class

constraint. We will work out only the Dirac method for such a system.
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3.4 Dirac quantization procedure.

Similarly with the second class constraint quantization, when we have a set of �rst and

second class constraint Cα = (C2
i , C

1
a) we should de�ne the Dirac bracket in such a way

that:

{C2
i , f(q, p)}DB = 0 (3.30)

{C1
a , C

1
b }DB = fabcC

1
c (3.31)

The Dirac quantization process just like before, we use the quantization map to de�ne

our commutator, ignoring the ordering, and the second class constraint vanishes as operator

identities. Having dealt with the second class constraint we can ignore them and focus on

the �rst class one. Now we can't do the same thing with �rst class constraint and this

means that the operator equation became a constraint in Hilbert space:

C1
a |Ψ〉 = 0 (3.32)

This states that we started with a nonphysical Hilbert space, called kinematical Hilbert

space, that had more degree of freedom than the physical one. Not all states in this space

are physical and to construct the physical Hilbert space we demand that they obey the

equation (3.32). Once we construct the physical Hilbert space we need to �nd the physical

inner product in this space, something that is not always possible. Dirac quantization

procedure for systems with �rst class constraints: �rst quantize using Dirac brackets and

then restrict the Hilbert space by demanding that constraint operators annihilate physical

states. Lastly, we need to de�ne observables that are gauge invariant. On a quantum level,

we would like to be able to only work with operators that map physical states into physical

states. If this were not the case, an operator would have no eigenbasis in the physical

state space and we could not even de�ne its expectation value. At the classical level,

this implies that the classical quantities equivalent to quantum observables are �rst class.

But we saw that �rst-class quantities are gauge-invariant in the Hamiltonian formalism.

Therefore, quantum observables in the Dirac quantization scheme correspond to classical

gauge invariant quantities. It seems as if our reduction of the original Hilbert space has

somehow removed the gauge degrees of freedom from our system, provided that we only

work with operators whose domain is the physical Hilbert subspace. Indeed, when such

a choice is made, the arbitrary operators that play the role of Lagrange multiplier in the

operator for the total Hamiltonian have no role and the time evolution of |Ψ〉 is determined
conclusively:

ĤT ≈ Ĥ + λ̂aĈ
1
a (3.33)

ĤT |Ψ〉 = Ĥ |Ψ〉 (3.34)

This is it and the theory is quantized. Just to remind a highly non trivial thing, the

ordering product makes that when going to quantum mechanics we actually have something
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like:

[Ĉ1
a , Ĉ

1
b ] = i~fabcĈ1

c +O(~2) (3.35)

[Ĉ1
a , H] = i~gabĈ1

b +O(~2) (3.36)

And for physical states:

[Ĉ1
a , Ô] = i~kabĈ1

b +O(~2) (3.37)

The fact that we ignore the ordering problem is related to retaining only the liner order

in ~, which in general is not good. One would want to �nd relations that are only linear in

~. There is no guarantee that such a thing is possible, especially when we try to satisfy the

last condition for every classical gauge-invariant quantity. This is, for example, a highly

non−trivial problem in loop quantum gravity. Now someone could ask whether or not this

quantization procedure is equivalent to the gauge �xed one. Until now there is no general

proof that Dirac quantization is equivalent to canonical quantization for �rst class systems

(In all physical cases so far this is true). Again we are faced with a choice that represents

another ambiguity in the quantization procedure.

3.5 Quantum Anomaly

Before we proceed to some basic examples lets see what could go wrong in the Dirac

quantization program. To the quantization to work out we assumed that the canonical

bracket is preserved in quantum mechanics:

[Ĉm, Ĉn] = i~fpmnĈp (3.38)

Such that:

Ĉm |Ψ〉 = 0 (3.39)

Is consistent with:

[Ĉm, Ĉn] |Ψ〉 = 0 (3.40)

However it is possible to exist higher order corrections that arises from quantum

mechanics:

[Ĉm, Ĉn] = i~fpmnĈp + ~2Âmn (3.41)

In this case, to be possible to proceed and the theory be consistent we need:

Âmn |Ψ〉 = 0 (3.42)

This condition has no classical counterpart and restricts to much the physical space,

normally it implies that:

|Ψ〉 = 0 (3.43)
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So it is not possible to impose that this term annihilates the physical states. This

means that the picture has changed, the quantum operator Ĉ is no longer �rst class and

can't be interpreted as gauge generators. The gauge invariance is broken at the quantum

level and the term Âmn is called gauge anomaly. If the gauge invariance is broken it is

meaningless to apply the Dirac quantization. The anomaly in the gauge invariance could

appear as well dynamically in the commutator with the Hamiltonian:

[Ĥ0, Ĉm] = i~dnmĈn + ~2Bm (3.44)

This means that the time evolution is not gauge invariant and would be possible to go

from a physical state to a nonphysical one. Gauge invariance is broken again. In the Dirac

procedure it is almost impossible to deal with these anomalous terms and in most of the

cases that we will work, they will be zero. It turns out that sometimes we can be clever in

the de�nition of physical state such that even that an anomalous term appears we can still

have gauge invariance. We will have to deal with that in the case of Bosonic String, this

method is called Fock quantization but we will not proceed any further with that. This

comes automatically in the BRST quantization as sometimes it is consistent even with an

anomaly.

3.6 Quantization of the �rst example: Gauge redundancy

Lets see how the quantization procedure runs for the case:

L =
m

2
(q̇1 + q̇2)2 − V (q1 + q2) (3.45)

We know how to quantize the gauge �xed action as is just a free shifted particle, the

interesting thing is to do the Dirac procedure in a gauge invariant way. The constraint is

unique and we start with the kinematical Hilbert space

Hkin = {|Ψ〉} = L2(R2) (3.46)

And with the usual inner product:

〈ψ|φ〉 =

∫
dq1 dq2 ψ̄(q1, q2)φ(q1, q2) (3.47)

The constraint need to be transformed in an operator in this space, this is done without

ambiguity because of the linearity:

Ĉ = p̂2 − p̂1 (3.48)

The next step in the Dirac quantization procedure is to construct the physical space,

as the space of solutions of:

(p̂2 − p̂1) |Ψ〉 = 0 (3.49)

It is easy to see that in position representation the physical wave function will satisfy:

∂Ψ

∂q2
− ∂Ψ

∂q1
= 0 (3.50)
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Then the physical state will be formed by wave functions of the form:

Ψ(q1 + q2) (3.51)

And the physical Hilbert space is then:

Hphy = {|Ψ〉} = L2(R) (3.52)

In this case, it is easy to see that the kinematical inner product is in�nity for physical

states. It is necessary to �nd another inner product in this space, in this case, this is a

trivial task and a simple integration on only one variable do the trick. Another remark

is that the physical wave function is gauge invariant. During the classical description, we

needed to solve the constraint and then consider equivalence classes of states generated by

the gauge symmetry to �nd gauge-invariant objects. Now, in quantum mechanics, the act

of solving the constraint already give us a gauge invariant object

3.7 Quantization of Proca Field.

This point now let's apply this knowledge to quantum �eld theory. The procedure is similar

only going from Hilbert to Fock space and the operators being distributions. The Proca

�eld is a good example of a second class constraint that can be quantized very easily, it

describes a massive vector �eld. The Lagrangian density is such that:

L = −1

4
BµνB

µν − m2

2
BµB

µ (3.53)

With Bµν = ∂µBν−∂νBµ. The conjugated momenta that we need to go to Hamiltonian
formalism is:

Πµ = −F0µ (3.54)

And we can see that we have the constraint:

Π0 = 0 (3.55)

The usual canonical commutation is set:

{Bµ(x),Πν(y)} = ηµνδ
3(x− y) (3.56)

Writing the Hamiltonian we have:

H =

∫
d3x

1

2
ΠiΠi +

1

4
BijBij −B0∂iΠi −

m2

2
B0B0 +

m2

2
BiBi + λ1Π0 (3.57)

The consistency condition of the constraint trough time evolution is:

{Π0(x), H} =

∫
d3z {Π0(x),−B0∂iΠi} −

m2

2
{Π0, B0B0} = −∂iΠi +m2B0 (3.58)
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If we demand that this constraint is preserved trough time evolution we get to use this

as a constraint, being identi�ed as the equation of motion of B0:

∂iΠi −m2B0 = 0 (3.59)

Then the Hamiltonian is:

H =

∫
d3x

1

2
ΠiΠi +

1

4
BijBij −B0∂iΠi −

m2

2
B0B0 +

m2

2
BiBi + λ1Π0 + λ2(∂iΠi −m2B0)

(3.60)

This is the last constraint as the time evolution of it does not generate any new

constraint, only �xes the Lagrange multiplier. Because we will use the Dirac method we

do not need to evaluate what is the Lagrange multiplier as this information will be in the

Dirac bracket. We can �nd out directly that they are second class and has the matrix of

Poisson bracket between then as:

{Ci, Cj} =

[
0 m2δ3(x− y)

−m2δ3(x− y) 0

]
(3.61)

This matrix is non singular because all the constraint are second class and we can �nd

its inverse:

{Ci, Cj}−1 =

[
0 − 1

m2 δ
3(x− y)

1
m2 δ

3(x− y) 0

]
(3.62)

With that we can construct the Dirac brackets of any phase space function and for our

case, starting with the equal times Poisson brackets:

{Bµ(x), Bν(y)} = 0 (3.63)

{Πµ(x),Πν(y)} = 0 (3.64)

{Bµ(x),Π)ν(y)} = δ3(x− y)δµν (3.65)

We arrive at the Dirac brackets:

{Bi(x), B0(y)}DB =
1

m2
∂iδ3(x− y) (3.66)

{Bi(x),Πj(y)}DB = δ3(x− y)δij (3.67)

{Πµ(x),Πν(y)}DB = 0 (3.68)

{B0(x),Πj(y)}DB = 0 (3.69)

{Bµ(x),Π0(y)}DB = 0 (3.70)

Now to quantize this theory we promote the Dirac bracket to the commutator and the

constraints as operator identities. This is a trivial task and we are done, the Proca �eld

is quantized and the Fock space is trivially constructed as there are only physical degrees

of freedom and we used all the constraints. It is possible to check that this is the right

commutation relations for the �eld using the constraint to compute [B0,Π0]
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4 Lecture IV.

4.1 Application of Dirac Quantization Procedure

Now that we understand better how to deal with constraints in the Hamiltonian formalism

and how to quantize a theory with constraints lets apply this Dirac Method to more di�cult

and useful problems. The set of theories that we will work �rst are reparametrization

invariant theories. We will study the free particle(non-relativistic and relativistic case) and

closed bosonic string. With the knowledge acquired from these theories, one can start to

tackle more hard problems like canonical quantization of Gravity or even go deeper in String

Theory. Let's review a little about reparametrization invariance in the classical setup and

then jump into the di�erent cases. In this lecture, we will work only in the �at space-time,

but the generalization for other space-times is straightforward.

4.2 Reparametrization Invariance

In general, a theory invariant for reparametrization has the following symmetry:

S =

∫
dτ L(qi(τ),

dq

dτ
, τ) =

∫
dτ ′ λL(q(τ ′),

dq

dτ ′
, τ ′) (4.1)

With λ an arbitrary real number. This is not the most general case as one could

have this symmetry up to a total derivative, but let's work in this section assuming that

the total derivative term is zero. This theory is invariant by the transformation of the

evolution parameter τ :

τ ′ = f(τ) (4.2)

We can �nd a general form for a Lagrangian to be invariant under this symmetry, this

let us transform any non-singular theory into a singular theory as this symmetry has the

form of a gauge symmetry. Starting from an action that has the physical time as evolution

parameter:

S =

∫
dt L(q, q̇, t) (4.3)

We can introduce the reparametrization invariance in the following form:

LR = L(q,
q̇

τ̇
, τ)τ̇ (4.4)

S =

∫
dτ LR(q, q̇, t, ṫ, τ) (4.5)

The physical time became a dynamical variable and the evolution parameter now is a

nonphysical time-like parameter. Before we investigate the Hamiltonian formulation of such

a theory we can ask why one would introduce such symmetry. The �rst motivation is to

preserve some symmetry of the problem, as will be the case of relativistic particle and string

theory. Another motivation is to understand Gravity better because reparametrization are
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just di�eomorphism of the real line and the gauge group of Gravity can be considered

as the di�eomorphism group of space-time. This procedure could simplify our life as we

could transform a Hamiltonian that depends on the evolution parameter explicitly into one

that does not have this dependence but has additional degrees of freedom. Because in

the Dirac program we need the action to be written as an integral of a Lagrangian over

time, we have the problem that some theories don't have the action given naturally in this

form. For the relativistic particle or string, it is given as an integral over the world-line

or world-sheet instead. To pass this problem we consider some time-like parameter which

behaves like the usual time coordinate and quantizes using this time. We can forget that

we did this procedure as this information will be stored in the theory through the gauge

symmetries. Let see how we could, in general, go to the Hamiltonian formalism using the

reparametrization invariant action (4.5):

pi =
∂LR
∂q̇i

(4.6)

p0 =
∂LR

∂ṫ
(4.7)

Using the de�nition of LR we can �nd:

p0 = L− q̇i

ṫ

∂L

∂q̇i
+ ṫ

∂L

∂ṫ
(4.8)

pi =
∂L

∂q̇i
(4.9)

We can introduce a covariant formulation by de�ning:

xµ = (t, qi) (4.10)

Such that the Hamiltonian for the unconstrained system appear:

p0 = −H(xµ, πµ)|q̇→ q̇
ṫ

(4.11)

This equation appear as a constraint, because we can't write ṫ as a function of the

other coordinates. If in the non-singular theory we had this inversion:

q̇i = f(qi, pi, τ) (4.12)

Then in this system we only have the inversion of the space components like:

q̇i = ṫf(qi, pi, t) (4.13)

We would not be able to invert ṫ as functions of the phase space variables. The

Hamiltonian in the reparametrization invariant theory will be:

HR = p0ṫ+ piq̇
i − LR = ṫ

(
p0 − L+ pi

q̇i

ṫ

)
= (4.14)
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= ṫ(p0 +H)|q̇→ q̇
ṫ

Calling the constraint C1 and identifying the ṫ as the Lagrange multiplier we can see

that the Hamiltonian is actually zero in the constraint surface:

C1 = p0 +H(xµ, πµ) (4.15)

HR ≈ λ(t)C1 (4.16)

This means that we don't have any evolution! This is to be expected as the time

parameter is nonphysical and one should look for the evolution with respect to the physical

time coordinate. This is a general feature of di�eomorphism invariant theories (There are

cases where this is not true and the Hamiltonian does not vanish). This means that all the

time evolution are gauge transformations and aren't physical, this is something that we will

have to deal when going to the quantum description of such a system. Now, let's specialize

deeper in the free particle case to get a better grasp of the Dirac procedure in theories like

this.

4.3 Non-Relativistic Free particle with reparametrization invariance: Dirac

Quantization

Starting from the action for a non−relativistic free particle:

S =

∫
dt

q̇2

2m
(4.17)

We can introduce a gauge symmetry(�rst class constraint) by expanding the coordinate

space:

S =

∫
ds

q′′2

2mt′
(4.18)

Where the prime derivative means:

t′ =
dt

ds
(4.19)

This action is invariant under reparametrizations on s, going to the Hamiltonian description

the canonical momenta is:

pt = −mq′2

t′2
(4.20)

pq = m
q′

t′
(4.21)

It is clear that we have a constraint in this system:

C = pt +
p2
q

2m
= 0 (4.22)
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Now the Hamiltonian in this case is:

HT ≈ t′(pt +
p2
q

2m
) (4.23)

This means that the Hamiltonian is zero on the constraint surface, systems of this kind

are called totally constrained systems. Because t′ plays the role of a Lagrange multiplier

we can write:

HT ≈ λ(s)C (4.24)

This is the only constraint and by consequence this is a �rst class constraint:

{C,C} = 0 (4.25)

{C,H} = 0 (4.26)

Lets see the �ow generated by HT :

q′ = {q,HT } = λ
pq
m

(4.27)

t′ = {t,HT } = λ (4.28)

p′q = {pq, HT } = 0 (4.29)

p′t = {pt, HT } = 0 (4.30)

It is clear to see that in (4.27) starting from the same initial condition we can have

di�erent solutions only changing the λ parameter. This means that the information of q

and t as a function of s is not important. The important question that one should ask is

relational questions like: What is the value of q when t is something? In some sense �xing

the gauge in this system is choosing a speci�c value for one of theses functions and the

relational question became fundamental. We can look for the gauge orbits in this case very

easily, the gauge transformations are:

dq

dχ
= {q, C} =

pq
m

(4.31)

dt

dχ
= {t, C} = 1 (4.32)

dpq
dχ

= {pq, C} = 0 (4.33)
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dpt
dχ

= {pt, C} = 0 (4.34)

The gauge orbits are:

q(χ) = q +
pq
m
χ (4.35)

t(χ) = t+ χ (4.36)

pq(χ) = Cte = p0 (4.37)

pt(χ) = −
p2
q

2m
(4.38)

In the last one, the constraint is used. This de�nes the �ow on the constraint surface.

Now as stated in the Dirac procedure we need to look for Dirac observables. We need to

look for functions on phase space that are constant on the gauge orbit (gauge invariant).

Let F be a Dirac observable, then:

{F,C} ≈ 0 (4.39)

Because the kinematical phase space has 4 degree of freedom and the gauge invariance

kills two of them we expect 2 linearly independent Dirac observables to describe our system.

This process is not always straight forward if you choose a bad gauge �xing. But for the

sake of illustration lets do the easier route. In our case because there is only one constraint

we need only one gauge �xing, let's choose:

t(s) = τ ; τ ∈ R (4.40)

This �xes one point on the gauge orbit of t to �x the value of q. Now given a phase

space function f we associate a physical observable F (τ) associating the value f(s) for all

point in the gauge orbit G(s) trough s. Speci�cally, the observable associated to q, Fq(τ)

is the value of q(s) at the point of the gauge orbit where t(s) takes the value τ . In this

construction we get:

Fq = q +
pq
m

(τ − t) (4.41)

The second Dirac observable is related to the momentum, which is constant:

Fp = pq (4.42)

All other gauge invariant observable are linear combinations of theses 2. Now the

next step is to quantize this system. Following our procedure we have only one �rst class

constraint, the kinematical Hilbert space is then constructed:

Hkin = {|ψ〉} = L2(R2) (4.43)
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Where the phase space is 4 dimensional:

q̂ |ψ〉 = q |ψ〉 (4.44)

t̂ |ψ〉 = t |ψ〉 (4.45)

p̂q |ψ〉 = −i~ ∂
∂q
|ψ〉 (4.46)

p̂t |ψ〉 = −i~ ∂
∂t
|ψ〉 (4.47)

With a kinematic inner product in this Hilbert space:

〈ψ|φ〉 =

∫
dq dt ψ̄(q, t)φ(q, t) (4.48)

And now we transform our constraint in a hermitian operator in this Hilbert space:

Ĉ = −i~ ∂
∂t
− ~2

2m

∂2

∂q2
(4.49)

In this case there is no problem in ordering and we can proceed without any problems.

The next step in the Dirac program is to �nd the space of solutions of the constraint

equation that will de�ne the physical Hilbert space. It is clear to see that the constraint

equation is just the usual Schrodinger equation:

Ĉ |ψ〉 =

(
−i~ ∂

∂t
− ~2

2m

∂

∂q

)
|ψ〉 = 0 (4.50)

We can write the solution of the constraint equation as:

|Ψ(q, t)〉 = e−
i
~ Ĥfree |Ψ(q, 0)〉 (4.51)

A immediate thing that we can see is that the kinematical inner product is in�nite with

physical states:

〈Ψ|Φ〉 =

∫
dq dt ψ̄(q)φ(q) (4.52)

This is not a good inner product to the physical Hilbert space. This is a normal feature

of non-compact gauge orbits(the integral in time diverges because of the non-compactness).

In this particular case its easy to �nd the physical Hilbert space, this is not a straightforward

thing to do in general. Because we know the solution of the unparameterized particle:

〈Ψ|Φ〉 =

∫
dq ψ̄(q)φ(q) (4.53)
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This is the physical inner product in the physical Hilbert space de�ned by the constraint.

The physical Hilbert space is then identi�ed as:

Hphy = {|Ψ〉} = L2(R) (4.54)

Then we have identi�ed the correct Hilbert space and all the procedure goes as usual.

The last step is to �nd the gauge invariant observables, this is straightforward and the

theory is quantized:

F̂q = q̂ − p̂q
m

(t̂− t0) (4.55)

F̂p = p̂q (4.56)

And Indeed:

[F̂q, Ĉ] = 0 (4.57)

[F̂p, Ĉ] = 0 (4.58)

As is expected.

4.4 Relativistic Particle

The relativistic particle is interesting because falls into the category of actions that aren't

in the standard form that Dirac quantization needs, the action for such particle is given by

the integral of the proper time:

S = −m
∫

dτ (4.59)

Such that:

dτ2 = dx02 − dxi
2

(4.60)

It is useful in this case to analyze the particle coupled to an electromagnetic �eld so

one can see how the Dirac quantization procedure would go in the interaction case, in the

end, we will �nish only the free case for illustration. The action writing in terms of the

time like coordinate for the free case is:

S = −m
∫

dγ
√
−ηµν ẋµẋν (4.61)

Where the dot is the derivative with respect to the time like parameter γ. If we want

to couple this to a electromagnetic �eld we just add the Lorentz term:

S =

∫
dγ
(
−m

√
−ηµν ẋµẋν − qẋµAµ

)
(4.62)
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First we note that in both cases the massless limit is not clear, this can be solved by

adding a additional �eld, however we will go to the Hamiltonian formalism soon and there

it will became clear how one could go to this limit if wanted. The �rst step for going to the

Hamiltonian formalism is to �nd the canonical momenta:

pµ =
∂L

∂ẋµ
=

mẋµ√
−ẋµẋµ

− eAµ (4.63)

We can see that we have the primary constraint:

C1 =
1

2
((pµ + eAµ)(pµ + eAµ) +m2) (4.64)

Now we can construct the Hamiltonian of this theory:

H = pµẋ
µ − L = 0 (4.65)

This is what we expected for a reparametrization invariant theory, extending the action

we write this as:

Hext ≈ λ(γ)C1 (4.66)

Now it is clear that there is only one constraint and it is �rst class. In this formalism

the massless limit is trivial to do and the constraint in this case would be:

C1 =
1

2
(pµ + eAµ)(pµ + eAµ) (4.67)

Now we will set the electromagnetic �eld to zero and proceed with the quantization.

When we have �nished the Dirac procedure we will come back with the Aµ to see what

would change. Now the constraint reads:

C1 = (pµp
µ +m2) (4.68)

This is just the mass shell condition for the particle, it appear as a constraint in our

theory. We can analyze the gauge transformations generated by this constraint:

δxµ = ε(γ){xµ, C1} = 2εpµ (4.69)

δpµ = ε(γ){pµ, C1} = 0 (4.70)

This is a displacement in the variable xµ along the direction of pµ. This means that

if we make a gauge transformation, the particle will appear somewhere else in space-time

with the same momentum. If we look at the class of all states that are equivalent to some

given state, we �nd that it is a straight line in phase space. The momentum will be at

the mass shell and gives the direction of the line in the con�guration space. Because the

parameter λ in the Hamiltonian is arbitrary we could set λ = 0 for instance and the system

would not evolve at all:

xµ = xµconst (4.71)
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pµ = (pconst)µ (4.72)

We could even choose a funny λ such that the particle oscillates or even travel back in

time. This is not a problem because we saw that any time evolution in this time parameter

is not physical. However we should be able to see the particle moving, this is possible when

we analyze how the coordinate change with respect to the physical time that we chose to be

x0(this selection became hard in the case of General Relativity, but because we are in �at

space-time this is direct). Let us analyze what are the physical observables of this theory,

the �rst one that we would get is the momentum, but not all of them are free coordinates

because of the constraint:

(pµp
µ +m2) = 0 (4.73)

We could write p0 in terms of the other coordinates:

p2
0 = ~p.~p+m2 (4.74)

So in general we get:

p0 = Qs
√
~p.~p+m2 (4.75)

Here Qs = ±1 is the sign of p0 that describes di�erent physical states. Of course, Qs is

an observable even if the �eld is switched on, this is the sign of the charge of the particle.

This means that in the momentum sector we have the following observables:

pi = O1
i (4.76)

Qs = sign(p0) = O2 (4.77)

If the �eld was on the observable would be the canonical momentum with the �eld in

it. In the con�guration space part, we can construct a gauge invariant function looking

for the transformation of xµ. We could try to construct an object that tells us where the

particle is when the physical time is at x0 = t. If an arbitrary state isn't at this time we

could always make a gauge transformation that shifts the new time to this value:

x′0 = t (4.78)

Because gauge transformations don't change the physical state this is the same state.

This means that ~x′ gives us the point in space that we want. In the absence of electromagnetic

�eld such observable can be written in the form:

~xp = ~x+
t− x0

p0
pi = ~O3 (4.79)

We can verify that this is indeed a observable because:

{~xp, (pµpµ +m2)} ≈ {~x, pµpµ} −
~p

p0
{x0, pµp

µ} = (4.80)

= 2~p− 2~p = 0

This �nish the complete set of observables of this theory. As was said before these

functions aren't Lorentz invariant so a reduced phase space quantization would break the

manifestation of the Lorentz symmetry.
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4.5 Free Relativistic Particle: Dirac Covariant Quantization

The next step now is to quantize using the Dirac program, we already �nd the set of

observables and the kinematical phase space. In this case, we don't have any ambiguity

when transforming the constraint into operators in the Hilbert space. Let us work in the

con�guration space representation of the state:

x̂µψ(x) = xµψ(x) (4.81)

p̂µψ(x) = −i~ ∂

∂xµ
ψ(x) (4.82)

The constraint as a operator became:

Ĉ1 = (p̂µp̂
µ +m2Î) (4.83)

The next step in the Dirac program is to restrict the kinematical Hilbert space given

by the space where ψ lives to the physical Hilbert space where the constraint annihilate the

physical states Ψ:

Ĉ1 |Ψ〉 = 0 (4.84)

(�− m2

~2
)Ψ(x) = 0 (4.85)

We know the complete set of solution of these equation so we can construct the physical

Hilbert space. It is easier to construct the physical Hilbert space as eigenvalues of the

momentum operator:

p̂i |q, s〉 = qi |q, s〉 (4.86)

Q̂s |q, s〉 = s |q, s〉 (4.87)

In wave function representation we get:

Ψq,s(x) = ei~q.~x−isωx
0

(4.88)

With:

ω =

√
~q.~q +

m2

~2
(4.89)

Now the interesting point to make is that there is no time evolution in the nonphysical

time parameter. We can't interpret the wave function as the spacial wave function that

evolves in the time x0. This causes problems like the lack of conservation of probability.

The only way out that we knew until now was to go to multi-particle physics. However this

is not true, we can see that the Klein Gordon equation is not the relativistic Schrodinger

equation. It is not a time evolution equation for the state but a constraint. If we keep
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this in mind and �nd an adequate scalar product in the physical Hilbert space we will have

no problems. We can quantize one single relativistic point particle. Now that we �nd the

right Hilbert space we can look for the physical inner product, normally we would want

that the complete set of observables that we chose to be Hermitian and this �xes the inner

product up to normalization. The tri-momentum and the charge became hermitian if their

eigenstates are orthogonal: 〈
q′, s′

∣∣q, s〉 = (2π)3δc,c′δ
3(~q − ~q′)g(q) (4.90)

If we want to �x the function g(q) let us require that ~xp is hermitian, here we will have

a order problem because p0 and x0 does not commute, the most general order that we can

choose is:

x̂ip = x̂i − (1− α)x̂0p̂−1
0 p̂i − αp̂−1

0 x̂0p̂i (4.91)

If we use the commutation relation we see that this ambiguity is really a quantum

e�ect:

x̂ip = x̂i − x̂0p̂−1
0 p̂i + i~αp̂−2

0 p̂i (4.92)

Because this is a observable for any value of α if we act into a physical state it should

be also physical:

x̂ip |~q, c〉 = −i ∂
∂qi
|~q, c〉+ iαqiω

−2 |~q, c〉 (4.93)

If we compute the matrix element of this we get:〈
~q′, c

∣∣ x̂ip |~q, c〉 = −i(2π)3
(
∂i(δ3(q − q′)g(q)) + δ3(q − q′)αqiω2g(q)

)
(4.94)

This operator is hermitian when:

∂ig(q) = 2αqiω2g(q) (4.95)

If we solve this we have:

g(q) = ω2α (4.96)

We see that the parameter α is still free, so we can choose the most convenient one,

usually this is the canonical choice α = 1/2:〈
~q, c
∣∣~q′, c′〉 = (2π)3δc,c′δ

3(q − q′)ω (4.97)

This concludes the treatment of the relativistic particle, we obtained the right inner

product in an invariant way and the Hilbert space. One could now see that if we wanted to

introduce the interaction we would need to solve the constrained equation with a background

�eld that is an extremely hard problem:(
(−i∂µ +Aµ)(−i∂µ +Aµ) +m2

)
Ψ(x) = 0 (4.98)

The Dirac formalism has this limitation when the constraint equation is hard to solve.

There is someways to solve the constraint using physical arguments but in the end, this is

where the BRST formalism start to shine. Next lecture we will work the case of the bosonic

string that are a little harder but has interesting proprieties as this ambiguity that appear

in the observables here appears in a more fundamental way there.

� 53 �



5 Lecture V

5.1 Dirac Quantization of the Bosonic String.

We will apply the Dirac quantization procedure to the Closed Bosonic String case. To

do that we will need to describe the classical system and its constraints and then apply

the quantization procedure. The classical action for the bosonic string is given by the

worldsheet area, written in terms of the vector Xµ(τ, σ). In our case lets work in the case

of closed strings:

Xµ(τ, 0) = Xµ(τ, 2π) (5.1)

We will choose τ as the time coordinate, then the Lagrangian is:

L = − 1

2πα′

∫
dσ
√
X ′µẊ

µX ′νẊ
ν − ẊµẊµX ′νX

′ν (5.2)

Where prime derivative is with respect to σ. The normalization is choosed by convenience

and α′ is a constant with dimension of length square(the only dimensional constant in this

theory that is related to the size of the string). The action written from this Lagrangian

is called Nambu-Goto action and it is invariant by reparametrization in σ and τ . Now the

next step is to arrive in the Hamiltonian formalism, the momenta coordinates will be:

Πµ =
∂L
∂Ẋµ

= − 1

2πα′
X ′µ(X ′.Ẋ)− Ẋµ(X ′.X ′)√
(X ′Ẋ)2 − (X ′.X ′)(Ẋ.Ẋ)

(5.3)

The dot is the usual Minkowski inner product. The canonical Poisson bracket is:

{Xµ(σ1),Πν(σ2)} = ηµνδ(σ1 − σ2) (5.4)

By the de�nition of the momenta we have the set of primary constraints:

C1(σ) =
1

2
(4π2α′2(ΠµΠµ) + (X ′µ.X

′µ)) (5.5)

C2(σ) = (ΠµX
′µ) (5.6)

The Hamiltonian on the constraint surface can be written as:

H0 =

∫
dσ (Ẋ.Π)− L = 0 (5.7)

As one would expect from a totally constrained system. The total Hamiltonian is:

HT ≈
∫

dsigmaλ1C1 + λ2C2 (5.8)

Lets see the gauge transformations generated by this constraints:

C1(ε1) =

∫
dσ ε1(σ)C1(σ) (5.9)
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C2(ε2) =

∫
dσ ε2(σ)C2(σ) (5.10)

Acting with this on the Phase space coordinates:

δε1X
µ = {Xµ(σ), C1(ε1)} = (2πα′)2ε1(σ)Πµ (5.11)

δε2X
µ = {Xµ(σ), C2(ε2)} = ε2(σ)X ′µ (5.12)

δε1Πµ = {Πµ(σ), C1(ε1)} =
(
ε1(σ)X ′µ

)′
(5.13)

δε2Πµ = {Πµ(σ), C2(ε2)} = (ε2σ)Πµ)′ (5.14)

These constraints are the typical di�eomorphism constraints. The di�erence is that

because we are using τ as a time coordinate the di�eomorphism constraint in the τ coordinate

became dynamical, not just a shift in the coordinate. The constraint generates those

transformations on the phase space that formally corresponds to the time evolution. We

can see that δε2 generate a shift in the phase space variables σ → σ + ε2. This symmetry

does not appear in the case of the relativistic particle because the spacial manifold, in that

case, is just a point. This transformation is easy to �nd invariant functions because we

just look for functions that are independent of σ. The other constraint generates a shift

in the τ parameter but because we use it as the time evolution it became a dynamical

evolution. Di�erent than in the point particle case this is one constraint for each point σ

in the string. This constraint usually is harder to solve because we would have to solve a

functional di�erential equation. This �rst constraint replaces the time evolution generated

by the Hamiltonian( which is zero in this case). These dynamical constraints are typically

quadratic in the momenta, like the energy for unconstrained systems. For �eld theories like

strings or gravity, this causes another problem. In the standard representation, the square

of the momentum operator will not be well de�ned, as it becomes a functional di�erential

operator. Because of that, one should think about a regularization before quantizing the

string, as there will be no well-de�ned operator for the �rst constraint. The most suitable

regularization is to Fourier transform the σ, which is compact and therefore we can replace

integrals with sums. Doing that we can sum the divergent series that will appear and get a

�nite theory. Before doing the Fourier transform it is better to change the basis such that

the constraints are simpler:

γµ =
1

2
(2πα′Πµ +X ′µ) (5.15)

βµ =
1

2
(2πα′Πµ −X ′µ) (5.16)

In this basis the Poisson bracket are:

{γµ(σ1), γν(σ2)} = πα′
ηµν
2
δ(σ1 − σ2) (5.17)
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{βµ(σ1), βν(σ2)} = −πα′ ηµν
2
δ(σ1 − σ2) (5.18)

{γµ(σ1), βν(σ2)} = 0 (5.19)

They form a almost complete set of variables, they are not independent because of the

total momentum of the string:

Pµ =

∫
dσΠµ = 2

∫
dσ γµ = 2

∫
dσ βµ (5.20)

To make this a complete set we can add the center of mass coordinate for the string :

XCM
µ =

1

2π

∫
dσXµ (5.21)

So we describe our system using (γ, β,XCM ). We can write the constraints in a

intelligent way using theses coordinates as:

C+ =
1

2
(C1 + 2πα′C2) = (γ.γ) (5.22)

C− =
1

2
(C1 − 2πα′C2) = (β.β) (5.23)

In this basis for the constraints its Poisson brackets are:

{C+(σ1), C+(σ2)} = 4πC+(σ2)δ′(σ1 − σ2) (5.24)

{C−(σ1), C−(σ2)} = −4πC−(σ2)δ′(σ1 − σ2) (5.25)

{C+(σ1), C−(σ2)} = 0 (5.26)

We got two separated algebras of �rst class constraints. Because of the derivative of

the Dirac delta, it is better to work in momentum space, and because of the regularization

that we will need to do, then:

fµ(σ) =

∞∑
−∞

fnµ e
inσ (5.27)

fnµ =
1

2π

∫ π

−π
fµ(σ)e−inσ (5.28)

Because the function is real we get that:

(fnµ )∗ = f−nµ (5.29)

� 56 �



With this convention the Dirac delta became:

δ(σ1 − σ2) =
1

2π

∞∑
−∞

ein(σ1−σ2) (5.30)

In the Fourier space the canonical Poisson brackets are:

{Xn
µ ,Πν(m)} =

1

2π
ηµνδn+m (5.31)

In the choosed basis:

{γnµ , γmν } =
iα′n

2
ηµνδn+m (5.32)

{βnµ , βmν } = − iα
′n

2
ηµνδn+m (5.33)

{γnµ , βmν } = 0 (5.34)

We can write the constraints in the Fourier space as well:

Cn+ =
∑
m

γµmγ
n−m
µ (5.35)

Cn− =
∑
m

βµmβ
n−m
µ (5.36)

The constraints are now in a more familiar form, known as the Witt algebra:

{Cn+, Cm+ } = iα′(n−m)Cn+m
+ (5.37)

{Cn−, Cm− } = −iα′(n−m)Cn+m
− (5.38)

{Cn+, Cm− } = 0 (5.39)

We are now ready to quantize the theory. Now we construct a wave functional in the

canonical basis such that:

X̂n
µΨ = Xn

µΨ (5.40)

Π̂n
µΨ = −2πi~

∂Ψ

∂X−nµ
(5.41)

The basis that we choosed is easily converted for quantum operators:

γ̂nµ =
1

2
(2πα′Π̂n

µ + inX̂n
µ ) (5.42)
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β̂nµ =
1

2
(2πα′Π̂n

µ − inX̂n
µ ) (5.43)

The next step that we need to do is to transform the constraint into a quantum operator.

The classical function is de�ned in (5.35) and (5.36). A interesting thing is happening, for

n 6= 0 the operators that appear are commuting so there is no order ambiguity in the

quantization of them. For n = 0 each term on the sum does not commute and the order

ambiguity that we discussed before emerges here. Lets work out the n = 0 case, we can

write both the constraints as (choosing a symmetric ordering):

Ĉ+(0) =
1

16π2
(P̂ .P̂ ) +

∑
m>0

(
γ̂mµ γ̂

µ
−m + γ̂−mµ γ̂µm

)
(5.44)

Ĉ−(0) =
1

16π2
(P̂ .P̂ ) +

∑
m>0

(
β̂mµ β̂

µ
−m + β̂−mµ β̂µm

)
(5.45)

Where P̂ is the operator of the momentum of the center of mass. We could write using

complex conjugation as well:

(γ̂nµ)† = (γ̂−nµ ) (5.46)

It is clear that in this form there will never be a solution for the constraints. This sum

will no converge when acting on the same state. We have to reorder the operators such

that both sums can converge. We can see that in the n > 0 case γnµ and β−nµ should be the

creation operators and the hermitian conjugate the annihilation one, only from the algebra.

Almost all terms must be such that the annihilation operator acts �rst, as otherwise there

is no chance for the vacuum to be a physical state. Now we can re-order many times as we

want and each time we pick up a constant. The �nal result is:

Ĉ+(0) =
1

16π2
(P̂ .P̂ ) + 2

∑
m>0

(
γ̂mµ γ̂

µ
−m
)

+ ~Ω (5.47)

Ĉ−(0) =
1

16π2
(P̂ .P̂ ) + 2

∑
m>0

(
β̂mµ β̂

µ
−m

)
+ ~Ω (5.48)

In a �rst look the constants could be di�erent but as we will see ahead there will be a

restriction to that. We could arrive at the exact value for N, if coming from a symmetric

ordering this is even easier. The only thing that will be necessary to do is to sum a divergent

series that will appear. The focus here will not be the actual value of N but the algebra

of the constraint. This additional term generates an anomaly in the classical algebra and

we get the Virasoro algebra. Doing the computation directly is painful, we will use the

Jacobi identity and the behavior of creation and annihilation operator to �nd the result

in a cleaver way. In the case that n+m is di�erent than zero we should expect that the

algebra remains the same so without losing any generality we can write:
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[Ĉn+, Ĉ
m
+ ] = −α′(n−m)Ĉn+m

+ +A(m)δn+m (5.49)

The term A(m) is the anomalous term and because the proprieties of the bracket we

have A(m) = −A(−m) and its a complex number that only depends on m. This will be

similar to the C− algebra. We can �nd its dependence on m by using the Jacobi Identity:

[Ĉk+, [Ĉ
n
+, Ĉ

m
+ ]] + [Ĉn+, [Ĉ

m
+ , Ĉ

k
+]] + [Ĉm+ , [Ĉ

k
+, Ĉ

n
+]] = 0 (5.50)

This gives us for n+m+ k = 0:

−α′[(n−m)A(k) + (m− k)A(n) + (k − n)A(m)] = 0 (5.51)

If we choose k=1 we can �nd a recurrence relation:

A(n+ 1) =
(n+ 2)A(n)− (2n+ 1)A(1)

(n− 1)
(5.52)

The most general solution for this relation is:

A(m) = c1m+ c2m
3 (5.53)

Now if we want to determine this constants we can compute the expectation value in

the vacuum of:

〈0|[Ĉn+, Ĉ−n+ ]|0〉 (5.54)

Because the choice of creation and annihilation operators we have that:

γnµ |0〉 = 0 n < 0 (5.55)

βnµ |0〉 = 0 n > 0 (5.56)

Then we can compute for n=1 and this give a relation between c1 and c2

〈0|[Ĉ1
+, Ĉ

−1
+ ]|0〉 = 0 (5.57)

c1 = −c2 (5.58)

Because both Ĉ1
+,Ĉ

−1
+ annihilate the vacuum, all the terms give zero. For n=2 we have:

〈0|[Ĉ2
+, Ĉ

−2
+ ]|0〉 = −〈0|C−2

+ C2
+|0〉 = −〈0|((γ̂−1.γ̂−1)(γ̂1.γ̂1|0〉 (5.59)

These are the only non zero terms, now we get the annihilation operators to the right

side using the commutation relations:

〈0|[Ĉ2
+, Ĉ

−2
+ ]|0〉 = −~2α′2D

2
(5.60)

� 59 �



Where D is the space-time dimension. Now we can equal both sides to �nd A(m):

A(m) = −~2α′2
(
D

12
(m3 −m)− 2mΩ

)
(5.61)

The additional term comes by compensation the C0
+ on the right side of the commutator.

With a similar argument we get the other algebra as well:

[Ĉn+, Ĉ
m
+ ] = −~α′(n−m)Cn+m

+ − ~2α′2δn+m~2α′2
(
D

12
(m3 −m)− 2mΩ

)
(5.62)

[Ĉn−, Ĉ
m
− ] = ~α′(n−m)Cn+m

− + ~2α′2δn+m~2α′2
(
D

12
(m3 −m)− 2mΩ

)
(5.63)

As is clear the algebra does not close anymore and even the freedom to choose Ω can't

make it close. This means that the procedure to impose:

Ĉ |Ψ〉 = 0 (5.64)

Does not select physical states. The system is no longer �rst class and does not make

any physical sense. In this case we need to use a di�erent arrange of constraints. It is

possible to construct two complex conjugate set of constraints that have closed algebra,

this is �xed and we don't have any freedom now. We want that a physical state have the

propriety:

γ̂nµ |0〉 = 0 for n < 0 (5.65)

β̂nµ |0〉 = 0 for n > 0 (5.66)

Such that we can call this state the physical vacuum. It is direct to see that if we

choose the physical condition to be:

Ĉn+ |Ψ〉 = 0 for n 6 0 (5.67)

Ĉn− |Ψ〉 = 0 for n > 0 (5.68)

And the Hermitian conjugate, except for n = 0 where the constraints are real. These

set of constraints close even if we include n = 0 in both subsets:

[Ĉn+, Ĉ
m
+ ] |ψ〉 = 0 for n 6 0 , m 6 0 (5.69)

In the case where n + m < 0 the anomaly term never acts and when its equal the

anomaly term is zero. Now the Fock space can be constructed. We can solve the wave

function for the ground state for n 6= 0:

(2πα′Π̂n
µ + inX̂n

µ ) |0〉 = 0 for n < 0 (5.70)
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(2πα′Π̂n
µ − inX̂n

µ ) |0〉 = 0for n > 0 (5.71)

Then we just need to solve:

Π̂n
µ |0〉 =

i|n|
2πα′

X̂n
µ |0〉 (5.72)

Using how the momentum act in the state we can see that the solution will be:

Ψ = Ψ(XCM )e−
1

2~α′
∑
mXµ

nX
−n
µ (5.73)

Where Ψ(XCM ) only depend on the center of mass of the string. It is easy to see that

asking to the constraint to be satisfy we get:

(P̂ 2 + 16π2~Ω)Ψ(XCM ) = 0 (5.74)

So the ground state of the string behaves like a particle with a mass proportional to

the ordering constant that is not �xed yet:

m2 = 16π2~Ω (5.75)

We will not compute N but if this is done we would �nd that the theory is only

consistent if D 6 26 and Ω 6 −2α′. If we introduce interaction this restricts, even more,

the possible values and until now it is only know how to introduce interactions in D = 26

Ω = −2α′, this is called the critical dimension of the string and the ground state has a

tachyon. In this theory, there is an additional problem that the creation and annihilation

operators are not gauge invariant only the small subset around n=0. This means that acting

with them will take a physical state into a nonphysical one. We would need to work the

equivalence classes again because the gauge freedom is not completely �xed. This is just a

problem of the choice of creation and annihilation operators, if we used one that does not

respect Lorentz than this would be possible. Nevertheless, the space that we constructed is

consistent even with the appearance of the anomaly term in the algebra. This computation

was more to show what happens in theories with anomalies and how is sometimes possible

to deal with that. Of course, the problem that we have in the end could be avoided if we

used BRST quantization because, in the end, we would gauge �x everything and kill all de

freedom consistently. The interesting point that this procedure brings is that everything is

gauge invariant until the end. Here we only quantized the closed bosonic string but the open

case is trivially archived using the same procedure only with half of the constraints. This

is just the beginning of the beginning of strings, the study of interactions and superstrings

that lies ahead need more powerful tools that can be studied once the Dirac Program is

well understood. Next lecture we will work the case of the Free Quantum Electromagnetic

�eld and conclude the course.

� 61 �



6 Lecture VI.

6.1 Dirac Quantization of Electromagnetic Field.

We saw how to treat constraints of �rst and second class classically and quantically. We

work out some simple examples before attacking the case of systems that are invariant by

di�eomorphism in one and two dimensions as a prototype to quantize gravity or even dive

deeper in string theory. Now lets �nally apply this knowledge to a more "high energy"

problem, let's quantize the electromagnetic �eld. To do that we will use again the Dirac

program of quantization to arrive in a quantum theory that is gauge invariant. After this

last example, we will discuss a little about the Dirac Program in general and see the road

ahead of us. Normally, in a usual course of quantum �eld theory, the quantization of

the electromagnetic �eld is done in rush and in a nonsatisfactory manner in the canonical

formalism. Only when the path integral is introduced that the quantization is done in a

more rigorous and consistent manner and generalized to Yang-Mills Theories in general.

What we will do here is to show the power of the Dirac program to construct the Fock

space of that theory without �xing the gauge. The �rst step to do that is starting from the

free action of the Maxwell Field:

S =

∫
d4x (−1

4
FµνF

µν) (6.1)

Where Fµν = ∂µAν − ∂νAµ. We know that this action is invariant under the gauge

transformation:

δAµ = ∂µΛ (6.2)

This transformation uses Λ and its time derivative this means that the gauge acts

twice killing two degrees of freedom. Lets see how this symmetry manifest itself in the

Hamiltonian formalism. First we split the spacial and temporal parts of the Lagrangian:

L( ~A, ~̇A) =

∫
d3x

1

4
(2F0iF0i − FijFij) (6.3)

To follow the Dirac formalism we need that t = x0 is distinguished. Now we need to

go to Hamiltonian description, the canonical momentum are:

Πi(x) =
δL
δȦi

= F 0i (6.4)

Π0 = 0 (6.5)

Immediately have the �rst class constraint

C1 = Π0 (6.6)

Because the �eld nature this constraint is actually a in�nite set of constraint one for

each space point. This canonical variables have the usual same time Poisson bracket:

{Aµ(x),Πν(y)} ≈ ηµνδ3(x− y) (6.7)
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The Hamiltonian is easily written as:

HT ≈
∫

d3x

(
1

2
ΠiΠi +

1

4
FijFij + Πi∂iA0 + λ1Π0

)
(6.8)

With the Lagrange multiplier λ1 being dependent of space as well. Now we need to

check if the time evolution preserves this constraint:

{C1(x), HT } ≈
∫

d3z {Π0(x),−∂iΠiA0} = −∂iΠi(x) (6.9)

Then for consistency we need to put this secondary constraint in our Hamiltonian:

C2(x) = −∂iEi (6.10)

This is the usual Gauss law that here appear as a constraint. So our Extended

Hamiltonian is:

HE ≈
∫

d3x

(
1

2
ΠiΠi +

1

4
FijFij + Πi∂iA0 + λ1Π0 − λ2∂iΠi

)
(6.11)

Now it is clear that both constraints are �rst class and there are no more constraints:

{C1(x), C2(y)} ≈ 0 = 0 (6.12)

{C2(x), H} = −∂i∂jF ij ≈ 0 = 0 (6.13)

Where we used the antisymmetry of the F. It is clear that both Lagrange multipliers

are arbitrary, lets see the gauge transformation generated by this �rst class constraint, if

we write:

C(ε1, ε2) =

∫
d3x ε1(x)C1(x) + ε2(x)C2(x) (6.14)

Then:

δA0 = {A0, C} = ε1 (6.15)

δAi = {Ai, C} = ∂iε2 (6.16)

This symmetry is not in the expected form that we saw in the Lagrangian formalism,

lets see how the Lagrange multipliers transform and then recover the form of the Lagrangian

transformation �xing the secondary constraint. The extended action is of the form:

SE ≈
∫

d4x [ΠiȦi −Π0A0 −HC − λ1Π0 + λ2∂iΠi] (6.17)

Under the transformation it is easy to see that:

δλ1 = ε̇1 (6.18)
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δλ2 = ε̇2 − ε1 (6.19)

Then if we want to recover the form of the transformation from the Lagrangian formalism

we �x the gauge in such a way that:

λ2 = 0 (6.20)

δλ2 = 0 (6.21)

This says that ε̇2 = ε1 and the symmetry is exactly what we had before. Now let's stay

in the Hamiltonian formalism and focus in the quantization of this theory. We just need

to �nd classical gauge invariant functions that we will use to describe the system. In this

case, it is easy to see that the momenta are invariant and the magnetic �eld will be as well:

{Ei, C} = 0 (6.22)

{Bi, C} = 0 (6.23)

In which Bi = 1
2εijkFjk and Ei = Πi. It is worth remember that the extended

Hamiltonian generate equations of motion that are equal only in the constraint surface.

Because of that, F0i is not the electric �eld in this formalism because the secondary

constraint added. In the end F0i will be the electric �eld and will match with the momentum.

The energy is the Hamiltonian on the constraint surface and we recover the usual one:

H =

∫
d3x

1

2
(EiEi +BiBi) (6.24)

Now that the classical theory is solved lets quantize the theory. The �rst problem of a

�eld theory is that the wave function now became a wave functional. We de�ne the basis

were the Âµ acts as multiplicative operator:

ÂµΨ = AµΨ (6.25)

ÊµΨ = −i~ηµν
δΨ

δAν
(6.26)

The constraints became quantum operators in the Fock space, there is no problem of

ordering because of the linear nature:

Ĉ1Ψ = 0 (6.27)

Ĉ2Ψ = 0 (6.28)

In the representation choosed:

δΨ

δA0(x)
= 0 (6.29)
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∂i
δΨ

δAi(x)
= 0 (6.30)

This constraints de�ne the physical Fock space, the �rst one says that a physical state

cannot depend on A0. The second condition says that this state need to be gauge invariant:

δΨ =

∫
d3z δAi

δΨ

δAi
= −

∫
d3z ε(z)∂i

δΨ

δAi
= 0 (6.31)

Now what we need to do is to construct such Fock space. A useful procedure is to �nd one

state that satisfy the constraints, then act with observables in this state. When act using

observables this will generate another physical state. As the physical state space is required

to be an irreducible representation of the observable algebra, we can generate every physical

state in this way. In the end we will construct the Fock space in some representation. This

is not a guarantee that will work as sometimes the Fock space constructed will not be

normalizable for instance. We can try to construct creation and annihilation operators that

are gauge invariant using the electric and magnetic �eld. By their de�nition they follow

the algebra:

[Êi(x), B̂j(y)] = −i~εijk∂kδ3(~x− ~y) (6.32)

Or in the Fourier space:

[Êi(k), B̂j(q)] = −~(2π)3εijkkkδ
3(k + q) (6.33)

Where Êi(k)† = Êi(−k). A �rst candidate to operator of creation and annihilation

appear if we write the Hamiltonian choosing a ordering in the way:

H =
1

2

∫
d3x (Êi + iB̂i)(Êi − iB̂i) (6.34)

There is a ambiguity in this de�nition but we always can drop out any constant here

because we only measure di�erences in energies(fuck you gravity!). In this way we can try

to use:

âi = (Êi − iB̂i) (6.35)

â†i = (Êi + iB̂i) (6.36)

If we do this choice and use hermitian �elds we de�ne the vacuum as:

âi |0〉 = 0 (6.37)

〈0|0〉 = 1 (6.38)

Now we can construct all the Fock states acting with the creation operator in the

vacuum. These states will be physical by construction but lets see if they have positive

de�nite norm. A state created by the creation operator is of the form:

|ψ〉 =

∫
d3xψi(x)a†i (x) |0〉 (6.39)
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We can already expect trouble because the commutator of the creation and annihilator

operators are not positive de�nite:

[ai(x), a†j(y)] = 2~εijk∂kδ3(~x− vecy) (6.40)

The norm of the state is:

〈ψ|ψ〉 = 2~εijk
∫

d3xψ∗i ∂kψj (6.41)

This product is not positive de�nite, if we choose a appropriate function ψi we can

make this norm be an arbitrary negative number. This means that this is not a good inner

product and we can't have a normed state and the conjugation proprieties at the same

time with these operators. We should look for another vacuum that ful�lls the constraint

and create another set of creation and annihilation operators. To do that we will go to the

Fourier space and use:

âi(k) = Êi(k) + εijk
kj
|k|
Bk(k) (6.42)

â†i (k) = Ê∗i (k) + εijk
kj
|k|
B∗k(k) (6.43)

This form can be justi�ed because it generate the Hamiltonian given an ordering but

more important it has a positive semi de�nite commutation relation:

[âi(k), â†j(q)] = 2~(2π)3|k|Pij(k)δ3(~k − ~q) (6.44)

Where Pij =
δijk

2−kikj
k2

is the operator of transverse projection. With these operators

we can de�ne the vacuum:

âi |0〉 = 0 (6.45)

In this case we will generate all the Fock space acting with the creation operator in

that vacuum. Lets verify if these states will have positive norm. We de�ne the state create

by one operator as:

|ψ〉 =

∫
d3k

(2π)3
ψi(k)a†i (k) |0〉 (6.46)

The norm of that state is:

〈ψ|ψ〉 = 2~
∫

d3k

(2π)3
(k2δij − kikj)ψ∗i ψj (6.47)

Now we have a positive semi-de�nite norm. We still have to show that the zero norm

state is the trivial one. The state will have zero norm when ψi = kiθ(k). In this case we

can see that inside the physical space they will be indeed the trivial state:

|ψ〉 =

∫
d3k

(2π)3
θ(k)kiâ

†
i (k) |0〉 = 0 (6.48)
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Where we used the Fourier transform of the Gauss law constraint. Then inside the

physical Fock space, this norm is positive de�nite. Then our work is done we found all the

physical Fock states in a gauge invariant approach. It is possible to see that these functions

that de�ne the n particle states have some ambiguities coming from the gauge invariance of

the vacuum. We could �x this redundancy but this is not mandatory because any matrix

element in this theory will be gauge invariant. The operators guarantee us that a physical

state does not evolve to a nonphysical state. Then we have the free theory quantized in

a gauge invariant manner and we could compute expected values on it. Of course, the

addition of interaction would be problematic as the Gauss law constraint would be harder

to solve but in principle, we could do the same thing and get a gauge invariant theory in

the end.

6.2 Conclusion

In this course, we learned how to quantize theories with constraints. We work out in more

detail the �rst class constraints because is the most relevant case for Modern Physics. Using

this knowledge we quantized some smaller examples and most importantly the free particle,

bosonic string, and the electromagnetic �eld. Each case had its peculiarities and di�culties

inherent from the formalism. We focused during the lectures in the Dirac quantization

program, that deal with the system in a gauge invariant manner until the end. This by

itself is a good advantage for the formalism but there are some �aws in it. The biggest

problem of that formalism is when the equation for the constraint is hard. Usually, we

can't solve a di�erential equation so there is a large chance that we crash in a wall doing

this formalism. Because of this problem that more powerful techniques were developed.

The BRST method is born when we give up the gauge invariance but in an intelligent

manner, we enlarge the phase space in such a way that we can use the techniques of the

Dirac procedure in that enlarged space to separate physical states. There are even powerful

methods like BV quantization that bring the power of BRST to the Lagrangian formalism

where most of the symmetries are manifest. With the knowledge acquired here, it is possible

to start the road to BRST in a more clear and direct way. During the treatment of the

constraint in this lecture we assumed that they are irreducible, something that is not always

the case. These details can appear in complicated theories and it should be dealt with great

care. I just want to emphasize that it is very important to understand the di�erence of

the constraint in the Lagrangian and Hamiltonian formalism, something that even modern

physicists get confused from time to time. The study of constraint system in the way that is

presented here is still an open �eld with some interesting open questions like what axioms

we need to guarantee the Dirac conjecture or how to deal in an invariant manner with

mixed constraints. To conclude, this was a brief introduction in this topic that will appear

somewhere in the path of many physicists so the basis constructed here can be used to

study many modern problems.
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A Geometric Formulation of Classical Mechanics

Here classical mechanics will be de�ned in a geometrical way that will be useful to visualize

some important features. In this spirit the con�guration space of a n−degree of freedom as a

n−dimensional manifoldM with local coordinates (q1(t), ..., qn(t)). Here the parameter t is

the real time so a trajectory is then the time evolution of the system. To describe the system

we need information of about the velocity, to have that we can construct the velocity phase

space as a tangent bundle overM. It has local coordinates (q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t))

and is a 2n−dimensional manifold. The dynamics in this picture is speci�ed by a Lagrangian
L:

L ∈ Fun (TM) (A.1)

This Lagrangian determines the dynamics of the vector �eld X in the manifold.

X =
d

dt
(A.2)

With the vector �eld determined we can �nd its integral curves γ(t) and by the means

of canonical projection7 get the motion on the manifold:

δ(t) = Π (γ(t)) (A.3)

The vector �eld in the velocity phase space on local coordinates is8:

X =
d

dt
= q̇i

∂

∂qi
+ q̈i

∂

∂q̇i
(A.4)

The vector �eld is determinate by the Lagrangian function L, to �nd the equation that

describe it is useful to construct the Lagrangian 1−form θ:

θ =
∂L
∂q̇i

dqi (A.5)

And with that construct a symplectic 2−form in TM, ω = dθ9 and a energy function:

E =
∂L
∂q̇i

q̇i − L (A.6)

The equation that �xes the vector �eld X is the usual Euler−Lagrange equation:

LX (θ) = dL (A.7)

In this equation LX is the lie derivative with respect of the vector �eld X, to see that

this is indeed the Euler-Lagrange equations it is easy to compute:

LXθ = LX

(
∂L
∂q̇i

)
dqi +

∂L
∂q̇i

LX

(
dqi
)

(A.8)

7Canonical projection is just the act of dropping the velocity coordinates.
8 Here we identify dqi

dt
= q̇i.

9Here q and q̇ are treated as independent.
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Now using that:

LX

(
dqi
)

= dLX

(
qi
)

= dq̇i (A.9)

LX

(
∂L
∂q̇i

)
=

d

dt

∂L
∂q̇i

(A.10)

We an write:

LXθ =
d

dt

∂L
∂q̇i

dqi +
∂L
∂q̇i

dq̇i (A.11)

If the Euler−Lagrange equation is satisfy then:

d

dt

∂L
∂q̇i

=
∂L
∂qi

(A.12)

Using this we prove that the �rst equation is only solved when Euler−Lagrange equations
are valid:

LXθ =
∂L
∂qi

dqi +
∂L
∂q̇i

dq̇i = dL (A.13)

This formulation is useful in describing relativistic systems and others things but has

a less clear geometrical interpretation and when the variables aren't free it has limitations.

Because of this, to move to the analysis of constraints in classical mechanics lets introduce

the Hamiltonian description. The main point in moving from Lagrangian to Hamiltonian

prescription is to describe the system using the cotangent bundle T ∗M, where the local

coordinates are (q1, . . . , qn, p1, . . . , pn) and the canonical 1−form momentum is:

pi =
∂L
∂q̇i

(A.14)

This space is called phase space (Sometimes called kinematics phase space because

it can have more degrees of freedom than the actual physical system). To describe the

dynamics in this picture we need a function on phase space that dictates the dynamics.

With the knowledge of the Lagrangian formalism, it is possible to construct such a function

on phase space as:

H(q, p, t) = piq̇
i − L (A.15)

An important point is that to this description make any sense you should be able to

write q̇i as a function of the momentum, basically inverting relation (A.14). This is not

always the case, as we will see when you have constraints this procedure fails and we need

to treat the system with more care. The great thing about the Hamiltonian description is

the trade of n second order equation for 2n �rst order Hamiltonian equation. The process

of going from Lagrangian to Hamiltonian mechanics is called a Legendre transformation:

Fun (TM)↔ Fun (T ∗M) (A.16)
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In the phase space if the Hamiltonian does not depend on time there is a natural

closed symplectic nondegenerate 2−form ω10. This means that the phase space is actually

a symplectic manifold and you can canonically relate vectors and co−vectors on it. Having

ω and being nondegenerate we can de�ne its inverse Ω, in matrix form:

Ωabwbc = δac (A.17)

A important object that lives in a sympletic manifold is a Hamiltonian vector �eld,

de�ned as11:

Xf = Ωydf (A.18)

In components:

Xa
f = Ωab∂bf (A.19)

Or we could invert this and write as:

Xfyω = −df (A.20)

This vector �eld will generate its integral curves and the integral curves will generate

the �ow in the phase space. With the inverse of ω we can de�ne canonically a Poisson

bracket:

{f, g} = dfyΩydg = −w(Xf , Xg) (A.21)

A important proprieties is that:

X{f,g} = [Xf , Xg] (A.22)

The last thing that we need to do Hamiltonian mechanics is the Darboux coordinate

system. It is proven that you can always can �nd a basis in phase space such that the

symplectic form is in the canonical form12

ω = dpi ∧ dqi (A.23)

Grouping all this elements, the Hamiltonian function de�ned in (A.15) de�nes a Hamiltonian

vector �eld:

XH =
d

dt
= ΩydH = {,H} (A.24)

10If the Hamiltonian depends on the time the right description is in terms of contact geometry that has

a degenerate 2−form instead of the non-degenerate of this case. This makes impossible to have an inverse

and the manifold does not have a natural way to relate vectors and co−vectors.
11y is the inner derivative, sometimes written as iX . iXω = Xyω.
12Transformations that preserve this coordinate system are called canonical transformations and plays

an important role in classical mechanics.
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This �eld generate integral curves:

γ(t) =
(
qi(t), pi(t)

)
(A.25)

The Hamiltonian vector �eld XH is de�ned as tangent to this curve, that gives us:

XH =
d

dt
=
∂qi

∂t

d

dqi
+
∂pi
∂t

d

dpi
(A.26)

But at the same time from the de�nition (A.24):

XH = {,H} =
∂H

∂pi

d

dqi
− ∂H

∂qi
d

dpi
(A.27)

Matching both relation we can see that the Hamiltonian equations of motion are satisfy:

∂H

∂pi
= q̇i (A.28)

∂H

∂qi
= −ṗi (A.29)

Finally solving H we can �nd the integral curve γ(t). To get only the position solution

you just project down to the manifold to get the trajectory δ(t) using canonical projection:

δ(t) = Π (γ(t)) (A.30)

A direct consequence of this formalism is that the time evolution generated by H

preserves volume in phase space. The last element of the Hamiltonian dynamics that we

need is the Noether theorem that relates symmetries with conserved quantities.

A.1 Noether Theorem (Hamiltonian version)

Let Υ ∈ T (T ∗M) a vector �eld on phase space such that preserves ω and H:

LΥω = 0 (A.31)

LΥH = 0 (A.32)

Then exists a function I(q, p) such that:

LXH I = 0 =
dI

dt
(A.33)

To prove this lets use cartan's lemma:

LV ω = V ydw + d (V yω) (A.34)

With this lemma the �rst relation (A.31) became:

LΥω = 0 = Υydω + d(Υyω) (A.35)
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The �rst term is automatically zero because ω is closed, the second term can be written

locally as:

Υyω = −dI (A.36)

This relation is the de�nition of a Hamiltonian vector �eld of the function I, using this

on (A.32) we get:

LΥH = 0 = LΥIH = 0 (A.37)

With this information we automatically get:

LΥH = 0 = {H, I} = −{I,H} (A.38)

We arrived at a powerful relation, this means that I is a constant of motion but at

the same time, H is invariant under the �ow generated by I. This version of Noether

theorem talks only about the symmetry of the phase space, depending on the nature of Υ

this symmetry can be realized in the con�guration space or not.
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