
On Gauge Theories and 

Inhomogeneous Cosmologies

Nilo Serpa



Why Symmetries?



The Gauge Principle

Lagrangian is invariant for global gauge 

transformations:

.ie θψ ψ→

It is required that this global property also holds locally. Thus, we get a gauge 

invariance which features a true dynamical principle:

( ) .i xe θψ ψ→



From the Downing to …

•The spacetime dependent length scales proposed by Weyl in 1918;

•Fock-Weyl  global phases of  wave functions with 

minimal coupling in 1927-1929;

•Lyra's gauge approach of Riemannian geometry in 1951; 

•Yang-Mills approach from Fock-Weyl  model extended to 

non-Abelian groups in 1954;

•Faddeev and Popov/de Witt selfconsistent scheme 

for the quantization of massless Yang-Mills fields in 1967.



The Gauge Principle



The Implementation of a Gauge 

Theory in Classical DomainTheory in Classical Domain



Gauge Principle in Classical Field 

Approach

• Thermodynamics is a nice and profound theory;

• A beautiful thing in thermodynamics is its evolutionary 

approach in terms of the wear of the systems;

• Why not gauge principle in classical thermodynamics?



Fundamentals of the Proposal

•Efficiency as a direct result of controlled entropy

•Gauge field as a tool to evaluate entropy from interaction processes•Gauge field as a tool to evaluate entropy from interaction processes

(condensed matter and thermal energy)

•Thermal energy representation by the construct of <<caloric field>>

•Thermodynamics as a gauge theory



Fundamentals of the Proposal

Entropy indicates incapacity to 

transform energy or to apply transform energy or to apply 

energy to transform matter.



The Plant in Process



Caloric Field (ξ ) Equation 

( )2 21 2 ln 0q

q ξ γ ξ γ ξ ξ∂ ∂ + − − =

22 ln :  the entropy termγ ξ ξ−

( )21 :  the luminothermic capacityγ−

:  the opacityγ
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Interesting Calculations 
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Interesting Calculations 
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New Field Equation 

qξD D ( )21 γ ξ+ − 22 lnγ ξ ξ=
q

q ξD D ( )21 γ ξ+ − 22 lnγ ξ ξ=



Additional Equations

About the diffusion model: the combined equation Lane-

Emden/Langmuir proposed for n = 2 (n is the polytropic index ),
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this equation describes the evolution of the dimensionless caloric density

y on a conductive cylindrical symmetry, keeping the density relatively

stable over a longer radius measured by x; it serves to establish a curve

which defines a useful level of energy balance.



Additional Equations

About the relationship between the thermodynamic variables S, P, T and 

V (entropy, pressure, temperature and volume): deduced equation in 

partial derivatives,

2 1V T∂ ∂
ɶ

this second-order equation, with the parameter corresponding to

the polytropic index (n), describes the variation in volume due to entropy

and pressure (assuming P parameterized with respect to S).

2 1
;

V T
c

S P P P

∂ ∂
=−

∂ ∂ ∂
ɶ

0c >ɶ



Additional Equations

These equations plus field equation are crucial to the construction of the 

production control algorithm to run up in the sector "Operations". These 

equations have in common the polytropic index, since it is always possible equations have in common the polytropic index, since it is always possible 

to give field  ξ parameterized by n. It is also important to note that all we 

can do is to work on systems with a good approximation for n = 2.



Quantum Gravity and Lyra Quantum Gravity and Lyra 

Geometry



A New Approach on Quantum 

Gravity

1.Attempts to reconciles QM with GR

2.Quantum spacetime             quantum 2.Quantum spacetime             quantum 

Riemannian geometry

3.Spacetime is a granular structure (singularity 

functions)

4.4-dimensional 

5.G-closure (bubble of compressed spacetime)



A Crucial Constraint 

Perturbative quantum gravity is inconsistent on quantum level 

due to the infinite number of non-renormalizable ultraviolet due to the infinite number of non-renormalizable ultraviolet 

divergences!!



Rethinking Space  

What is movement??What is movement??



What is Lyra Geometry? 

Lyra’s geometry is a generalization of Riemannian geometry—

initially taken in a manifold not endowed of a metric—with a 

positive definite function, the scalar field χ(xk) for scale positive definite function, the scalar field χ(x ) for scale 

changes, in which the reference system is defined not only by 

the coordinates but also by including that scalar field, that is, 

the gauge function χ(xk) 



What is Lyra Geometry? 

( )† 1 1
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Motivations

Black Holes (singularities)…

G-closure

…as bridges between GR and QM



Motivations

The model (phenomenological)

G-closure

Co-orbiting supermassive black holes powering the giant radio source 3C75



Motivations

G-closure

1. Gravitational attraction between the bodies tends to 

squeeze or compress them as they pull one another squeeze or compress them as they pull one another 

toward their center points; so, the strong attraction 

between massive bodies leads to a compression of 

space contained among  them.

2. Proposition : under strong gravitational compression, 

time dilates and space ceases to be a degree of freedom 

in the direction of compression.



Motivations

G-closure



Singularity Functions
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1. they describe phenomena based on geometry (very interesting for 

our proposal), 

2. they capture any changes in time evolution, 

3. they can include infinitely many spacetime segments in different 

states, 

4. they can be rescaled by any factor, 

5. they are independent of units, and 

6. they are continuous, differentiable and integrable like common 

functions. 



The measure operation on the 

spacetime invariant element

2 ,ds g d x d xµν µ µ ν νε ε= − −
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Fundamental correlation function:



The measure operation on the 

spacetime invariant element

The quantum spacetime was matched with quantum Riemannian metric 

in order to obtain the correlation function, that restricted to time paths is

2

0
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The measure operation on the 

spacetime invariant element

2 d xd x d xµαα σ
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The new geodesic equation in Lyra geometry
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The measure operation on the 

spacetime invariant element

The timelike geodesic in Lyra geometry
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Paleogravity: A Classical Paleogravity: A Classical 

Supersymmetric Model



What is Paleogravity?

Paleogravity is “ancient gravity”, or, in a precise 

way, effects of massive systems accumulated all way, effects of massive systems accumulated all 

along in time. Based on this concept, any local 

gravitational effect is influenced by its own 

history. “Gravity takes a long time to manifest its 

strength”.    



Motivations

•To study only symmetry relations between gravitons and

gravitinos under Lagrangian formalism, abstracting all other

features

•To consider supergravity in a cosmological pre-quantum  field •To consider supergravity in a cosmological pre-quantum  field 

approach of gravity

•To analyze geometric backgrounds of the symmetries

•To explain some features to be expected from gravitinos, if they

exist



Generalities

Graviton  (boson):  spin 2                  rank 2 gμν ;

Gravitino (fermion):  spin 3/2 ;

Both not yet detected.



Generalities

Light gravitinos (10−6 eV to few keV range);

They provide additional supernova cooling mechanisms (light They provide additional supernova cooling mechanisms (light 

gravitinos emission);

States modeled by light gravitinos would appear to the observer 

as missing energy since gravitinos cannot be detected.



The Problem of Non-Locality

•Higher derivative Lagrangian models lead to immense difficulties

and huge complications!!

•Non-locality evokes a real effort of philosophical reflection on 

macro and micro scales of the universe

•Non-local inheritance factor as a device to

include far-off interferences

•The myth of Lagrangians with no integrals 

•Gravity as the cosmic agent of the cumulative results from the 

evolution of galactic clusters, superclusters and so on



The LT Bubble: The Swiss 

Cheese Model
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The group 
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The group       of gravitors with elements∪
2( , )ı ηγ± i2( , ),ηγ±1

is formed via direct product of their two 

matrix components; examples:
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The Clifford algebra adS
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Those gravitors were related by the action 

of the adS algebra        according to
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and so on, that features Wick-rotations.



The phenomenological Lagrangian of 

interaction with non-local terms:
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Noether’s theorem applied to the 

fields gives
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In short:

•gravitinos live in adS regions (instable);

•If supersymmetry is broken, that is, gravitinos come up from
adS region, they get mass (coupling to <<border gauge>> field),adS region, they get mass (coupling to <<border gauge>> field),
but they become gravitons as soon as they cross the junction
between the two universes;

•gravitino and graviton are Wick-rotations of one another. 



The phenomenological Lagrangian 

density exhibiting a time-integral and 

a <<border gauge>>:
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junction term
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term



The phenomenological Lagrangian 

density exhibiting a time-integral and 

a <<border gauge>>:

Euler-Lagrange
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Moral of the story:  field       connects the 

gravitino field with its own “history” acting on 

its inhomogeneity (                                      ).2| | |G g g g dτ τ〈 〉= 〉 +∂ 〉 〉∫⌣

G〈 〉
⌣

In this sense, it is interesting to put this 

2A A A Adτ τ′ = +∂ ∫

In this sense, it is interesting to put this 

connection in the friendly form of a 

transformation as



Inhomogeneous CosmologiesInhomogeneous Cosmologies



Physics

Astronomy

The pertinence

Astronomy

Cosmology

Astrophysical 

Cosmology



The usual conception



FundamentalsFundamentals

•• Spacetime is 4Spacetime is 4--dimensional, being dimensional, being 

homogeneous at homogeneous at GpcGpc scale, isotropic and in scale, isotropic and in 

uniform expansion (uniform expansion (ΛΛCDM)CDM)uniform expansion (uniform expansion (ΛΛCDM)CDM)

•• Light travels through null geodesics (Light travels through null geodesics (dsds22 = 0= 0))



FundamentalsFundamentals



•• Ockham’s razor Ockham’s razor –– if we deal observationally and if we deal observationally and 
satisfactorily with  simple symmetric models, we satisfactorily with  simple symmetric models, we 

FundamentalsFundamentals

satisfactorily with  simple symmetric models, we satisfactorily with  simple symmetric models, we 
do not need any complicated model.do not need any complicated model.

•• Isotropy is tested only in relation to one point  (it Isotropy is tested only in relation to one point  (it 
does not prove homogeneity).does not prove homogeneity).

•• We always look at the past.We always look at the past.



Inhomogeneous cosmologies

•• LTB Cosmology  LTB Cosmology  –– inhomogeneous density (inhomogeneous density (dust shellsdust shells))

•• Stephani Cosmology Stephani Cosmology –– inhomogeneous pressure inhomogeneous pressure 
((gradientgradient--ofof--pressure shellspressure shells))



LTB Modeling 

• 3 arbitrary functions:

( )M r

EnergyEnergy

||||

Baryonic gravitational Baryonic gravitational 

mass mass 

((active gravitational massactive gravitational mass))

( )β r

( )f r

Constant Constant → → simultaneoussimultaneous BigBig--BangBang

CurvatureCurvature



The LTB metric

•• General class of metricsGeneral class of metrics

( ) ( ) ( )22 2 2 2 2 2 2, , sin  ds dt b r t dr R r t d d= − + + θ + θ φ

( )
( )

2

2
,
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R r t
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A family of solutions that describe inhomogeneous A family of solutions that describe inhomogeneous 

collapse of dust:collapse of dust:



FLRW X LTB

MODEL METRICS SCALE 

FACTOR

DENSITY

FLRW

LTB
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Type Ia Supernova at Virgo, NGC 4526



nickelnickel cobaltcobalt ironiron

•• Type Ia supernovae derive from carbonType Ia supernovae derive from carbon--oxygen white oxygen white 

Type Ia Supernovae

•• Type Ia supernovae derive from carbonType Ia supernovae derive from carbon--oxygen white oxygen white 

dwarf in binary systems. The dwarf absorbs mass dwarf in binary systems. The dwarf absorbs mass 

from its companion, a red giant, achieving critical from its companion, a red giant, achieving critical 

mass of explosion. mass of explosion. 



Type Ia Supernovae

�� Extreme luminosity Extreme luminosity (10(1099 -- 10101010 LLSun))

�� High homogeneity  High homogeneity  

advantages

StandardStandard

candlescandles

�� Rare eventRare event

�� Short durationShort duration

disadvantages



LT model
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Ref: Garfinkle D, arXiv:gr-qc/0605088 (2006).
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LTB plot, Ω=0.3 , c= 8.5

LT model
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Ref: Garfinkle D, arXiv:gr-qc/0605088 (2006).
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LTB plot, Ω=0.3 , c= 8.5
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Ref: Riess et al, arXiv: astro-ph/0611572v2 (2007).
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LTB plot, Ω=0.3 , c= 8.5
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Stephani cosmology
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Field equation in Stephani cosmology
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The age of the universe is very larger in this 
cosmology!! This is a problem for the standard 
model!!



What now?What now?



The physical image of the world 

depends on which part of the world 

we want to describe and in which we want to describe and in which 

circumstances we are observing 

the world.



Thanks a lot!!Thanks a lot!!


