
Charge quantisation without magnetic poles

Romero Solha

November 10, 2017



Main reference

• Charge quantisation without magnetic poles:
a topological approach to electromagnetism.

Journal of Geometry and Physics (2016).

1



Organisation

• Present the natural phenomenon of electric charge quantisation.

• Pose the problem of electric charge quantisation
(and hint a solution).

• Motivate the new formalism.

• Derive the consequences of the new formalism.
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Fact from nature

• Fletcher and Millikan (1909–1913):

qe = ke .

3



Electric charge quantisation problem

• Does there exist an electromagnetic theory able to explain the
natural phenomenon of the electric charge quantisation
without extra unobserved physical hypothesis?

• Idea: associate curvature with ?F ⇒ no magnetic poles.

• Challenge: ?F does not satisfy the Bianchi identity,

better saying
∫
∂V
?F is not zero, unless ρe = 0 and Je = 0.
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Contemporary Maxwell’s theory: magnetic poles and Faraday

• Faraday tensor, F :

Fµν =


0 E1 E2 E3
−E1 0 −B3 B2
−E2 B3 0 −B1
−E3 −B2 B1 0

 .

• No magnetic poles and Faraday’s law of induction,∫
Σ
F = 0 ⇒ ∂[λFµν] = 0 .
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Contemporary Maxwell’s theory: Gauss and Ampère

• Hodge dual ?F of the Faraday tensor (constitutive relations):

?Fµν =


0 −B1 −B2 −B3
B1 0 −E3 E2
B2 E3 0 −E1
B3 −E2 E1 0

 .

• Gauss’s law and Ampère’s circuital law,
with Maxwell’s correction,∫

Σ
?F equals the sources ⇒ ∂µF

µν = Jν .
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Newton’s gravitation

• Gravitational force field = mg.

• Field equations (and gravitational potential),

∫
γ
g · d` = 0 ⇒ g = −grad(φ) and curl(g) = 0

∫
Σ
g · da = −4πm(Σ) ⇒ div(g) = −4πρ

.
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Maxwell’s equations



∮
Σ
B · da = 0

∫
S
∂
∂tB · da +

∮
∂S

E · d` = 0

∮
Σ
E · da = Q(Σ)

∫
S
∂
∂tE · da−

∮
∂S

B · d` = −I(∂S)
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How Maxwell constructed his electromagnetic theory

• He looked for a formalism able to explain all the experimental
facts about electricity and magnetism, known at his time.

• He had to formulate a theory able to account for: Gauss’s law,
Ampère’s circuital law, Faraday’s law of induction, and the
apparent absence of magnetic poles.

• In the course he amended Ampère’s circuital law and provided a
better understanding for phenomena involving light.

• Here I am performing a similar task: I am looking for a classi-
cal formalism able to explain all the experimental facts about
electromagnetism known at this time.
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The General Relativity analogy

• Not M and g, but (TM, g,∇g).

• No gravitational force field: only tidal forces, via curv(∇g).

Ric(∇g)− 1
2sc(∇g)g = 8πT .

• No potential (no meaningful vector calculus).

• Underlying geometric structure

(L, 〈·, ·〉,∇) .

• Equations and effects via curv(∇).
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Another fact from nature: ES effect (magnetic AB effect)

• Fields E and B are derived from ∇ via its curvature.
They are no longer fundamental objects of the theory.

• Different choices of connexions provide inequivalent curvatures
(i.e. different fields E and B).
Contrary to potentials, which can provide the same fields for
different choices.

• The topologies of both M and L are of relevance in the new
formalism (nonintegrable phases).
In accordance to the Ehrenberg–Siday effect.
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A new framework for electromagnetism

• Definition: an electromagnetic field over a spacetime region is
a hermitian line bundle defined over the same spacetime region
excluding the portions occupied by sources together with a
hermitian connexion whose curvature satisfies that:

(i) the integral of its Hodge dual over any gaussian surface
vanishes,

(ii) its integral over a gaussian surface multiplied by −e
√
−1 is the

total electric charge contained in the gaussian surface,

(iii) and its contraction with a unitary time vector field multiplied
by e

√
−1 and integrated along an amperian loop is the total

electric current passing through the amperian loop.
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In mathematical symbols

• Hermitian connexion and its curvature, ∇ and curv(∇);

• gaussian surface Σ, amperian loop γ, and unitary time vector
field X (e.g. − ∂

∂t);

• the electromagnetic field tensor is defined as
ω := −(e

√
−1) · curv(∇), and one has:

(i)
∫
Σ ?ω = 0,

(ii)
∫
Σ ω is the total electric charge inside Σ,

(iii) and −
∫
γ ıXω is the total electric current passing through γ.
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Topological aspects of the sources

• Theorem: Over any gaussian surface Σ in M − {sources}∫
Σ

√
−1 · curv(∇) is an integer,

and for gaussian surfaces satisfying Σ = ∂V∫
∂V

√
−1 · curv(∇) = 0 .

• ∂V = Σ′ −Σ ⇒
∫

Σ′
ω =

∫
Σ
ω .

• ∂S = γ − γ′ ⇒ −
∫
γ
ıXω = −

∫
γ′
ıXω + displacement current .
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Comparison with Maxwell’s theory: (ii) Gauss, and (iii) Ampère

• Gauss’s law, ∫
Σ
ω = Q(Σ) ⇒

∮
Σ
E · da = Q(Σ) .

• Ampère’s circuital law, with Maxwell’s correction,

−
∫
γ
ıXω = I(γ) ⇒

∮
γ
B · d` = I(γ′) +

∫
S
∂
∂tE · da .

• It holds ω = − ? F .
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Comparison with Maxwell’s theory: (i) magnetic poles and Faraday

• No magnetic poles,∫
Σ
?ω = 0 ⇒

∮
Σ
B · da = 0 .

• Faraday’s law of induction,∫
Σ
?ω = 0 ⇒

∫
S
£X(?ω) =

∫
∂S
ıX ?ω ⇔

∫
S
∂
∂tB ·da = −

∮
∂S

E ·d` .

• It holds ?ω = F .
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Simple nontrivial example on the Minkowski spacetime

• Point charge whose worldline is {x = y = z = 0} has

B =

 0
0
0


and

E =
(qe/4π)

(x2 + y2 + z2)
3
2

 x
y
z

 .
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Electric charge quantisation

• Hodge dual of a Faraday tensor for a point charge
whose worldline is {x = y = z = 0}

$µν =
(qe/4π)

(x2 + y2 + z2)
3
2


0 0 0 0
0 0 z −y
0 −z 0 x
0 y −x 0

 .

• If $ = −(e
√
−1) · curv(∇), then

∫
Σ$/e is an integer.∫

Σ
$ = qe ⇒ qe = ke .

• Theorem: the tensor $ is the electromagnetic field tensor of
an electromagnetic field of a point charge whose wordline is
{x = y = z = 0} if and only if qe is an integral multiple of e.
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The Poisson picture of the Lorentz force law

• The hamiltonian does not change: free particle,

H(p,x) =
1

2m

3∑
j=1

(pj)
2 − (p0)2 .

• The classical commutation relations do change:

{p1, p2} = −qB3 , {p1, p3} = qB2 , {p2, p3} = −qB1 ,

{p0, pj} = qEj .

• Hamilton’s equations are equivalent to Lorentz force law,{
ṗ = {p, H}
ẋ = {x, H} .
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