On excited states in real-time
AdS/CFT

O







GKPW is an Euclidean prescription to calculate n-point
functions of CFT local operators through calculations in the

dual bulk theory.
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Motivation

O

» The Skenderis and van Rees prescription is a real-
time extension of the GKPW prescription.

o However, in Lorentzian signature, initial and final conditions
are required in order to have a well defined problem.

o These conditions should be related to the initial and final
states, but so far no explicit interpretation in the dual CFT has

been given. ¢L
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Motivation

O

» The Skenderis and van Rees prescription is a real
time extension of the GKPW prescription.

The authors demonstrated that one can obtain time ordered n-
point functions in the vacuum operator by gluing Lorentzian
and Euclidean regions, with Dirichlet boundary conditions.
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» The natural thing to do next is to turn on sources ¢~
_ and see whether we reach excited states

on M_

and precisely which states are we describing.
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But before studying a concrete example, can we say
something general about these states?

It turns out we can!



Excited States

O

» In order to unravel the nature of the states |?+) one

can consider the following set-up:
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Even if SvR stated their prescription as
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one can safely assume (and they hint towards it) that it comes
from a saddle point approximation of
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Where the Lorentzian part is by definition
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and one should recall that Hartle & Hawking taught us that
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The relevant part of this is that one can rewrite SvR as
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and that for a arbitrary final state
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which we will use in the following argument.
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Excited States

O

» In order to unravel the nature of the states |?+) one

can consider the following set-up:
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Excited States
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The last step is to squeeze the remaining Lorentzian
part M such that
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but if (Y7l is indeed arbitrary then we have shown that
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Having obtained the previous result, one can (out of
pure boredom) try to calculate the inner product
between them...

But hold your horses because it turns out that the
GKPW prescription has already done that for us'
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It is easy to see that(¥?-|¥?-) # 1. Normalizing the
states yields the result
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where the always positive product (G < 0)
0

(f1, ¢2) = [°dr [ dr’ ¢1(7) G(r,7") ¢5(7")
and ¢*(7,z) = ¢(—7, ) have been defined.

Does it ring any bells...? Not yet...?



Excited States
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The BDHM prescription states that the quantum
CFT operator IS the canonically quantized AdS field

O(t,Q) = lim, 0o 72 B(t,7,Q) = 3, al F*(t,Q) + arFi(t, Q)

If both prescription are consistent, then
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Before moving on to the concrete example, lets write
down some results for these states to see where we
are aiming at
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Further connected n-point functions are null. Feel
free to ask why, since it may not be trivial.



Connected n-point functions in general have
multiple terms, take for example n=2
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One can show (won’t do it now, don’t insist) that for
coherent states
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Similar cancelations are responsible for n>2 trivial
results.



Before moving on to the concrete example, lets write
down some results for these states to see where we
are aiming at
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Further connected n-point functions are null. Feel
free to ask why, since it may not be trivial.



In-Out Formalism

O

» A massive free complex scalar field dual to a CFT
local operator in the In-Out formalism is solved.
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In-Out Formalism




A radial cut-off R is necessary for the problem to be

well defined. Fori = {£, L}, the boundary conditions
are

O (r,t,0)lr—r = R™2-¢(t, ) = RA72¢%(t, )

A+:A=d/2+\/‘fﬁl—2+m2:1+\/1+m2

Our Euclidean manifolds . A [

admit normalizable modes! /
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» Lorentz region

Metric and EOM
ds* = —(1+r2)dt* + (1 4+ 72) " dr? + r2dy?
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For frequencies +w:* one can build N solutions gni (r)|r=r =0
Solution
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The NN modes integrand as an infinite number of
single poles at +w % (this is no coincidence!)
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This forces to choose a complex integration path in
the frequency integral.



» Lorentz region

Metric and EOM
ds* = —(1+r2)dt* + (1 4+ 72) " dr? + r2dy?

(I:I — m2) ¢ =0 = Pp(rt,p) x 5 die fw,l,r)

flw,l,7) = (1+7r? )\/_/2 Pl (F+ll|+A F+|l! A2 1—|—|l|;—7°2)

For frequencies +w:* one can build N solutions gni (r)|r=r =0
Solution

RA—Q . Y . 7 w’ljrr.
OL(r,t,0) = 5 2iez f]—‘ dwdt! dgp' e~ (=) Fillo=e )CDL(t’aSQI)JJ:((Tl»R))_’_

R _ R -



» Euclidean regions

Metric and EOM
ds? = +(1 +r3)d7r? + (1 + r?) " tdr? + r?dy?

(O-m?) @x =0 = u(r,7,¢) x €7+ f(iw, 1, 1)

flw,l,7)=(1+r )\/_/2 Pl (F+ll|+A W+|l! A+2. 4 ). _Tz)
For frequencies +iw® one can still build N solutions!
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In-Out Formalism

* Gluing the solutions

Near .7, (t —t') > 0 since every source ¢”(t') has been left
behind.

One can then carry out the W integrals in the NN modes by
residue theorem
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Thus the Lorentzian solution near> ™" can be written
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» On-shell action
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The radial derivative applied to NN modes give
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You may wonder how come both N and NN modes
end up with the same R dependence!

There are 2 key arguments that result in such a blasphemous
result:
We are not considering the r dependence, but rather the R
dependence! The solutions are of the form
Oyy ~ AR) f(w,l,r) On ~ B(R)gni(r)
As a consequence, it is not immediate to determine the final R
dependence in a large-R expansion.

Both the 70, operator and the denominator f(w,!, R) in the NN
solution play a subtle but fundamental role in the process! These
result in turning the “real” NN leading terms in contact terms.



WARNING! SUBTLETIES AHEAD!

O

* You may wonder how come both N and NN modes
end up with the same R dependence!

For NN modes, the R~ term is the leading one that has
non-integer dependence in [, i.e. that is not a contact term.

For N modes, it can be shown that

gni(r) ~ =B(wyy,1) R4 ((%)A—Q - (%)—A)

and that the coefficients are independent or R
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which allows to prove the previous results.




» On-shell action
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In-Out Formalism

* On-shell action

The same analysis holds for each M and putting together the
three contributions one gets the full on-shell action.

Its complete expression is not very illuminating, but noticing
that each term in the actionis ~ ¢'r0:(¢* +>_,.; #°)

There are terms independent of qu coming from the Euclidean

quadratic terms.

. . L : : i g
There are terms linear in ¢ coming from the mixed @@’ terms.
: .. L
There is one term quadratic in @ .
No other powers of ch appear in the action.

Notice that this means that that the connected n-point
functions, n>2 are all trivial in this example. (COHERENCE!)
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One Point function wa =20+ |I| + A

¢ b _ . . . .
e = —2(A-1) 3, BuResn (¢+;nz 4G () 6_7’“’”‘“”"9)

which (up to a normalization constant) perfectly
matches the BHDM results, behaving as if

W) oce I5- 92710y o eZi M al o)

nl o _\/271-\/2 anGSnl @ inl = CA fa M_ deQO F:l(_i’ra gp) d)— (Ta 9‘0)



Two Point function
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which is the same as for the vacuum... Wait, WHAT!?

Recall this is the connected 2-point function!
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SvR recipe is recovered from quantum analysis and
“link” with EQG.

The states generated by turning on Euclidean

SOurces are
—[. Oé_
W) = e Je- 9970y

it proves the SvR conjecture on excited states.

These states reproduce every holographic check from
coherent states, with explicit eigenvalues
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Current Objectives

O

» Introduce A®° interactions

We expect that a ®° term lead an on-shell action with
contributions as ®2 ~ (a' + a)? which could translate into a
sort of squeezed states.

» Prescribe our own operator

Coherent states are an (over-)complete basis, and as such
allows us to reconstruct the CFT operator from the bulk theory.

» Improvement of the Hartle-Hawking construction

For AdS Quantum Gravity we know how to define/compute
wave functional of excited states through Euclidean path
integrals.




