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Relatimstic Quantum Mechanices.
By P. A M. Dirac, F.R.8., 8t. John's College, Cambridge.
{Received March 24, 1932.)

§ L. Introduction.

The steady development of the quantum theory that has taken place during
the present century was made possible only by continual reference to the
Correspondence Principle of Bohr, according to which, classical theory can give
valuable information about quantum phenomena in spite of the essential
differences in the fundamental ideas of the two theories. A masterful advarice
was made by Heisenberg in 1925, who showed how equations of classical
physics could be taken over in a formal way and made to apply to quantities
of importance ih quantum theory, thereby establishing the Correspondence
Principle on a quantitative basis and laying the foundstions of the new
Quanturm Mechanics. Heisenberg’s scheme was found to fit wonderfully well
with the Hamiltonian theory of classical mechanics and enabled one to apply
to quantum theory all the information that classical theory supplies, in so far
as this information is consistent with the Hamiltonian form. Thus one was
able to build up a satisfactory quantum mechanics for dealing with any
dynamical system composed of interacting particles, provided the interaction
could be expressed by means of an energy term to be added to the Hamiltonian
funetion.

This daes not exhanst the sphere of usefulness of the classical theory.
(lassical electrodynamics, in its accurate (restricted) relativistic form, teaches
us that the idea of an interaction energy hetween. particles is only an approxi-
mation and should be replaced by the idea of each particle emitting waves,
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which travel outward with a finite velocity and influence the other particles
in passing over them. We must find a way of taking over this new information
Into the quantum theory and must set up a. relativistic quantum mechanics,
before we can dispense with the Correspondence Principle.

A preliminary attack on the question of relativistic quantum mechanics has
been made through the solution of the problem of a single charged particle
Irioxring in a specified classical field, For the treatment of this problem it is
essential to use Schrédinger’s form of quantum mechanics, according to which
the motion of the particie 1s described by a wave function inhvolving the space
and time co-ordinates in a symmetrical manner. The solntion is satisfactory
from the point of view of the Correspondence Principle, although it involves a
difficulty owing to the appearance of possible negative energy values for the
particle. The difficulty is not due to a misuse of classical information and
will not concern us here.

The extension of this wave-function method te two or more particles can
easily be made so long as we keep to the idea of a given classical field in which
the particles are moving. The resulting theory is logically satisfactory, but
is, of course, incomplete, as it gives no interaction between the particles. It
hecomes necessary then to abandon the idea of a given classical field and to have
instead a field which is of dynamical significance and acts in accordance with
quantum laws,

~ An attempt st a comprehensive theory on these lines has been made
by Heisenberg and- Pauli* 'These authors regard the field itself as
3 dynamical system amenable to Hamiltonian treatment and its inter-
action with the particles as deseribable by an interaction energy, so
that the usual wmethods of Hamiltonian quantum mechanics may he
applied. There are serious objections to these views, apart from the purely
mathematical difficulties to which they lead. If we wish to make an
observation on a system of interacting particles, the only effective method of
procedure is to subject them to a field of electromagnetic radiation and see how
they react. Thus the rdle of the field is to provide a means for making observa-
tions. The very nature of an observation requives an wnferplay between the field
and the particles. We cannot therefore suppose the field to be a dynamical
system on the same footing as the particles and thus something to be observed
in the same way ag the particles. The field should appear in the theory as
something more elementary and fundamental.

Again, the field equations are always linear and thus of the form typical of

* ¢ Z. Physik,’ vol. 56, p. 1, and wol. 59, p. 168 (1929). :
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the wave equation of quantwm theory. This suggests deep-lying connections
and possibilities for simplification and unification which are entu:ely Ia»ckmg m
the Heisenberg-Pauli theory.

In the present paper a scheme is proposed which gives the interplay between
particles and field apparently correctly and in a surprisingly simple manper.
Full use is made of all the information supplied by the classical theory. - The
general ideas are applicable with any kind of simple harmonic wave transmitting
the interaction between particles and providing the means of observation of
particles (e.g., with longitudinal waves like sound waves) and not merely for
the electromagnetic case, though presumably only the latter is of interest in
atomic theory.

§ 2. Relativistic Observations.

A definite advance in the relativistic theory of the interaction of two electrons
is contained in a recent paper by Mller,* where it is-shown that in the calcu-
lation of the mutual scattering of two colliding electrons by Born’s method of
approximation, one may describe the interaction with retarded potentials.
and use relativistic ideas throughout, without getting any ambiguity in the
soattering coefficient to the first order of approximation. This lack of
ambiguity is ground of presumption of the correctness of the result. When,
however, one tries to apply similar methods to the higher approximations or
to more general problems, one meets very definitely with ambiguities.

The method hy which Maller obtained bis result may be compared with the
methods of the Correspondence Principle in use hefore the introduction of
Heisenberg’s matrix theory, for calculating Einstein’s A and B coefficients from
clagsical models. In certain cases the result obtained was unambignous
(usually those cases for which the result was zero) and was then presiimed: to
be correct. In general, however, there was amhlgmty, 0 that one coul.d get
no reliable accurate result.

This analogy suggests that it would be useless to try to extend Maller’s
method by setting up rules to provide a definite interpretation for ambiguous
quantities. Any attempts in this direction would be just as futile as the
attempts made in the pre-Heisenberg epoch to calculate Einstein’s A’s and B’s
from some sort of mean of classical quantities referring to the initial and final
states. One ought to proceed on quite different lines, namely by following
the methods introduced by Heisenberg in 1925, which have already met with
such great success for non-relativistic quantum mechanics.

_* ¢ Z. Physik,’ vol, 70, p. 786 (1951).
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Heigenberg put forwaxd the principle that one should confine one’s attention
to observable quantities, and seb up an algebraic scheme in which only these
ohservable quantities appear. Strictly speaking, it iz not the observable
quantities themselves (the Einstein A’s and B’s) that formed the building stones
of Heisenberg’s algebraic scheme, but rather certain more elementary quantities,
the matrix elements, having the observable quantities as the squares of their
moduli. The extra phase quantities introduced in this way are essential.

Let us see what are the corresponding quantities in relativistic theory. To
make a relativistic observation on a system. of particles we must, as mentioned
in the introduction, send in some incident electromagnetic radiation and
examine the scattered radiation. The numerical quanfity that we observe is
thus the probability of occurrence of a certain radiative transition process.
This process may be specified by the intensities of the various monochromatie
components of the ingoing and of the outgoing fields of radiation. (We shall
ignore the purely mathematical difficvlty that the total number of these com-
ponents s an infinity of a high order.) The phages must not be specified
together with the intensities, as this would violate well-established gquantum
principles.

In non-relativistic quantum mechanics the probability of occurrence of any
transition process is always given as the square of the modulus of a certain
quantity, of the nature of a matrix element or simply a transformation function,
Teferring o the initial and final states. It appears reasonable to assume that
this will still be the case in relativistic quantum mechanics. Thus the relativis-
tie observable quantities, which are always transition probabilities, will all
appear as the squares of the moduli of certain quantities. These quantities,
which we shall refer to as probahility amplitudes, will then be the building
stones analogous to Heigenberg’s matrix elements. We should expect to be
able to set up an algebraic scheme wnwolving only the probability amplitudes and
to translate the equations of motion of relativistic classical theory directly into
exact equations expressible entively tn terms of these quantilies.

The information that classical theory supplies is thus to be vsed to give
relations between the probability amplitudes of different physical processes,
rather than to enable one to calculate a particular one of thers. Only in very
apecial cases, of which Maller’s paper provides an example, is it possible to
evaluate a relativistic transition probability without at the same time evaluating
a whole series of them, referring to all the possible ways in which the particles
ander consideration can react with the radiation field.

A point of special importance about the building stones of the new theory
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i8 that each of them refers to one field of ingoing waves and one field of out-
going waves, or to one initial field of a transition process and one final field.
Quantities referving to two initial fields, or to two final fields, axe not allowed.
This shows a departure from the theory of Heisenberg and Pauli, according to
which, if one is given any quantity referring to one initial field and one final
field, one can obtain from it a quantity referring to two initial fields, or to
two final fields, by a straightforward application of the transformation theory
of quantum mechanics. The Heisenberg-Pauli theory thus involves many
quantities which are unconnected with results of observations and which must
be removed from consideration if one is to obtain a elear insight into the under-
lying physical relations.
: § 3. Equations of Motion.

- We ghall now consider in detail the question of how the information con-
tained in classical eléctrodynamics can be talen over into the quantum theory.
We meet at once with the difficulty that the classical theory itself is not free
from ambiguity. '

To make the discussion precise, let us suppose we have a single electron
Interacting with a field of radiation and consider the radiation resolved into
mgoing and outgoing waves. The classical problem is, given the ingoing
radiation and suitable initiaf conditions for the electron, determine the motion
of the electron and the outgoing radiation. The classical equations which deal
with this problem are of two kinds, (i} those that determine the field produéed

by the electron (which field is just the difference of the ingoing and outgoing
fields) in terms of the variables describing the motion of the electron, and (ii)
those that determine the motion of the electron. Equations (i} are quite
_definite and unambiguons, but not so equations (ii). The latter express the
acceleration of the electron in terms of field quantities at the point where the
electron is situated and these field quantities in the complete classical picture
are infinité and undefined. '
~ In the usual approximate treatment of the problem one takes for these field
quantities just the contributions of the ingoing waves. This treatment is
necessarily only approximate, since it does not take into account the reaction
on the electron of the waves it emits. We should expect in an accurate treat-
“ment, that the field determining the acceleration of the electron would be in
some way assoctated with both the ingoing and outgoing waves. Classieal
attempts have been made to improve the theory by assuming a definite struc-
ture for the electron and calculating the effect on one part of it of the field
produced by the rest, but such methods are not permissible in modern physics.
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We must recognise at this point that we have reached the limit of classical
electromagnetic theory. We have quite definite equations for déetermining
the motion of the electron in terms of field quantities, but we cannot interpret
these field quantities in the usual classical picture and the most we can say
about them is that they are related in some nen-classical way to two fields,
namely, those of the ingoing and of the outgoing waves. Further advance can
be made only by intreducing quantum idess.

Let us make the assumption that the passage from the fidd of ingotng waves

to the field of outgoing waves is just o quantum jump performed by one field. 'This
assumption is permissible on account of the fact, discussed in the preceding
section, that all the quantities in relativistic quantum mechanics are of the
nature of probability amplitudes referring to one ingoing field and one out-
going field, so that we may associate, say, the right-hand sides of the probability
amplitudes with ingoing fields and the left-hand sides with outgoing fielda.
In this way we automatically exclude quantities referring to two ingoing fields
or to two outgoing fields and make a great simplification in the foundations of
the theory.
~ The significance of the new assumption lies in the fact that the classical
picture from which we derive our equations of motion must contain no reference
to quantum jumps. This classical picture mmust therefore involve just one
field, & field composed of waves passing undisturbed through the electron and
satisfying everywhere Maxwell’s equations for empty space. With this
picture the equations of motion for the clectron are perfectly definite and
nnambiguous. There are no equations of motion for the field, as the field
throughout space-time is pictured as given. Thus the interaction between
electron and field is introduced into the equations it only one place.

The quantisation of the equations of motion derived from this picture may
conveniently be carried out in two stages. Let us first quantise only the
variables describing the electron. We then get just the nsual quantum theory
of the motion of an electron in a given classical field, with the difference that
in the present case the field must necessarily be resolvabie into plane waves
and must therefore contain nothing of the nature of a Coulombh force. Wehave
a Schrédinger equation of the form

P =0,

where the operator ¥ is, neglecting spin

_fa D S T AT .
Fm(‘aké«iwf-eA,,) {\a.’w—a-;: eA,d,. .o — miet, (1)
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It should be remembered that the wave-function ¢ involves not only the
variables z, y, #, ¢ describing the electron, but also a large number of para-
meters describing the field, which parameters may conveniently be taken to
be the intensities J and phases w of the various Fourier components of the
field. The'p.otentials A oceurring in T are likewise functions, not only of the
variables , y, 2, ¢ describing the momentary position of the electron, but also
of the parameters J and w.

In the second stage of the quantisation we assume that the J’s and s
occurring in ¢ and the A’s are not numerical, but are operators satisfying
the usual quantum conditions governing the intensities and phases of the
Fourier components of the electromagnetic field in- empty space. The new
wave equation obtained in this way is to be treated on the same lines as the
previous one. In particular, it may be used to determine matrix elements
associated with electron jumps. Each such matrix element will now be a
funetion. of the non-commuting J's and w’s, so that, when we take a representa-
tion of the J’s and w’s, it becomes a set of quantities, each referring to two
gtates of the field as well as the two electronic states, and thus heing of the
nature of the probability amplitudes of § 2.

For the problem of the interaction of two electrons, we require a wave-
function ¢ which is a function of the variables z;, ¥y, 2, t; and @4, ¥, 2, Ig
describing the two electrons and of one set of J's and w’s describing one field.
‘This ¢ must satisfy the two wave equations '

Fyp =0, Fyp=0, | @)

where ¥, iz the operator obtained from F by substituting 8/8¢,, ete., for 8/ét,
ete., and taking for the A’s their values at the point 2, %,, 2, &, and similarly
for Fp. These two wave equations describe completely the relations between
the two electrons and the field.- No terms of the type of a Coulomb inter-
action energy are required in the operators of the wave equations. The
interaction of the two electrons is due to the motions of hoth being connected
with the same field. This interaction manifests itself mathematically through
the fact; that, if we take a wave function 4:1, a function only of z,, ¢4, 2t and

the J’s and w’s, satisfying
Fidn =0, (34)

and a second wave-function i, a function only of w,, ¢, 7, 2, and the F’s
and w's, satisfying _
. Fyby =0, (38)
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then neither of the products &, and Yy, will satisfy both the wave equations
(2). The solution of equations (2) is an essentially different and more com-
plicated problem than the solution of (34} and (3g).

§ 4. Interaction between T'wo Partrcles tn One Dimension.

It may seem rather surprising that a theory in which all the fields are resolv-
able info plane waves can give anything of the nature of the usual electrostatic
forces between electrons. We shall therefore illustrate by a simple example
the fact that these forces really are contained In our wave equations. We
shall take the case of two particles moving in a field in one-dimensional space
and shall proceed to solve equations (2), making various approximations that
are permissible when we are not interested in relativistic effects.

Suppose the field to be describable by a potential function V satisfying the.
wave equation

eV _18V_,
a2

and the classical expression for the energy to be

1 f(/aVie 1 /avye
H=_—i{— = =) td=
SR
If we resolve V into its Fourier components, thus

V= j o, e | gve—sio) gy, )

—

the expression for the energy will go over inte

o
H= lj v2 {a,a_, + b.b_.}dv. (5}
¢.Jo
Let us now see what are the Poisson brackef relations between the Fourier
coefficients ¢ and b, These relations must be chosen such that the quantities
a, e, b, ¢, considered as dynamical variables, satisfy equationa of motion
of the Hamiltonian form with the Hamiltonian function (5), thus

,?1 - int
dt(a”e ) = [a, e, H]}

ar

iva, == [a,, H],
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and similarly for b,. It is easily verified that we must have
(@, el = [by, b] =icfv. 8 (v +v)
[@,, B,] == 0.
In the quantum theory these relations become

a2, — g, = bb. — bub, = — hefv. 8 {v + v}
b, — boa, =0
We now introduce two particles, of masses my amd my and  charges ' ¢,
and ¢y, and suppose the interaction of each with the field can be described by
an interaction energy equal to its charge multiplied by the value of V at the
point where it is situated. Thus, if we neglect the relativistic variation of mass
with velocity, we have the two wave equations

., @ At gt
{?’k 'é?l + gm a 2 EIV (mltl)} 4’

(3.2 2 o |
]\""k 352_ 2m ax 62V (ﬁgtg} 4"
By putting t, = ¢, =¢, we can reduc_e these to the one wave equation
Boe B e '
[al+ o 523 s s — 9 V) ~ eV (e} 4 = o
We shall proceed to obtain & solution of this eqﬁation m the form of a power
series in the ¢’s. Thus we put

$ = g+ ¢; + dg -+
" 0 At g2 A2 :
{zh—é;-}-%a—m?*{*gm Sngt }L[Jo (8)
3 B 52
(5t i T ) W=V @OtV @ O
{ZJZ a% 4 oo B _.?EE} Yg = {EIV (2,2) 4 e,V (_1;25)} Py (10}

G 32 T s B
We take as the solution of (8)

where -

thg = Pl oiDitalh o— VLR
where .

WPl PE | {11)
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representing a state for which the particles have the momenta p, and p,, and
all the J's, 4.e., the intensities of the Fourier components of the field, vanish,
Now the operator £,V () 4- £5V (%,t) occurring on the right-hand sides of
(9) and (10), if expressed as a matrix in a representation in which the J’s are
diagonal, would contain only matrix elements veferring to transitions in which
just one of the J’s changes by one quantum. It follows that {; maust consist
of 2 sum of terms each referring to 2 state of the field in which just one oscillation
is excited by one quantum. Similarly ¢, must consist of a sum of terms each
referring either to a two-quantum or to a zero-quantum state of fhe field.
The latter are the ones that interest vs here, as they may be compared with the
terms that would arise from the insertion of an interaction energy between the
two particles into the operator of the wave equation (7).

‘We can obtain the solution of equation (9) by expanding the right-hand side
in terms of its Fourier components by means of {4) and dividing each component
by the number to which the operator on the left-hand side of (9} is equivalent
when. it operates on that component. This gives

a, g {thafc)

b= J . {w T = (- oo ooy — pfam,

+ b dv. ¢
W — kv — (py — hv/c}[2my — po?/ Qma} ’
® _ a, grerar)
T j—m {W — hv — Pi/2my — (py + hv/q)zﬂmz
N b, ¢ C—mie) } dv. b
W — hv — p.%2m; — (py— hv[c)/2m,

If we use (11} and also neglect terms like p, fmqe, Av/myc® compared with unity,
as is permissible when we are not interested in relativistic effects, this reduees

to

d
gy
v

Yy — 2 © {a, 6 G804 b o (=i
Blew

. {12)
&g j’ fa, ¢ @Pmio y p, g -oiay dv Yo
—e v

When we substitute this value for ¢, in the right-hand side of (10) and also
substitute for V its expansion given by (4}, we obtain an expression consisting
of an operator, which is a homogeneous quadratic function of the a’s and s,
operating on ¢y, We must evaluate that particular part of the expression that
refera to the unexcited state of the field, Only those terms of the operator
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involving products like a,a_, or b,5_, will contribute anything to that_ part,
To obtain the eontribution of a term involving ¢,e_,, we observe that, for
v> 0, a, and a_, are like the quantities p + g and p — 4¢ respectively in
the problem of the simple harmonic oscillator. Thus ¢e_,, with v > 0,
is proportional to twice the energy of the corresponding oscillation (without
zero-point epergy) so that it gives no contribution when multiplied into .
The first of the quantum conditions (8) now shows that, to get the contribution
from a term involving ¢_,a, with v > 0, we must count a_.a, as equal to
kefv .8 (v — v'). In the same way we find that we must count bh_, = =0 and
b_,,»b _—}wjv 8 (v — v) with v > 0.

The term on the right-hand side of {10) arising {rom the produet of %V (z4t)
with the first of the terms for ¢, in (12} may be written

LY i (tb2ele) =i’ {E—2fc)
— —h- d\ﬁ‘ {a_,y*e & + b_,t é }

X jm {(b e“‘ ¢+, fe} + b eau (t--xl,le)} ‘IJ
w ¥

That part of it referring to the unexcited state of the field is, by the foregoing
rules ' ' ' ' o

— %2 jmdv [ dv }MS(V — V) e hale) gh )y o=V (t=2ale) sv(t zure)} Qg
9 g ¥V

= — 20 L L con vy — mp)e. do

The coefficient of ¢, here differs only by an infinitely great constant (independent
of =, and z,) from

il d )
2e,546 L —;g {1 — cos vz — z,)fc} = ﬂ'elsz|ml — g

The other terms on the right-hand side of (10) may be dealt with in the same
way and give for the complete part referring to the unexcited state of the field

{reses |2, — 2a] + K} 4o, o
where X is an infinite constant.

Equation (10) with expression {13} on its right-hand suie Is just what we
should get if we were golving the wave equation

B, ke
{h +2m18x1 +2mza$22—~2mlez|xl-—ma|--K}&]J-WO,

. by a method of approximation through expansion in powers of €;89. Thus
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our wave-equation (7) contains implicitly an interaction. between the particles,
expressible approximately by the interaction energy 2mee, |®, -~ #5|. This
mteraction energy agrees numerically with what we should expect from a one-
dimensional electrostatic theory. -There is, however, a mistake in sign, as it
gives an attractive force between like charges.

Summary.

A quantam theory is proposed in which the Interaction between particles
takes place by means of vibrations of an intervening medium transmitted with
a finite velocity. The fundamental relations involve only quantities having
observational significance, account heing taken of the fact that an act of
observation necessarily involves an interplay between particles apd field. A
detailed solution of a one-dimensional problem is given in order to show that
farces of electrostatic nature are implicitly contained in the theory.

[Note added, April 20th.—It has been pointed out to me by Professor
Heisenberg that the sign of the inferaction energy given by the above
caleulation is really quite correct, since with the one-dimensional, longitudinal
waves there used the classical theory also requires an attractive force
between like charges,]




