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INTRODUCTION

 The main theory explaining electromagnetic phenomena is due to Maxwell who

summarized a couple centuries of experiments into his equations

 This theory is linear

 Its Lagrangian can be written as

Aμ being the 4-potential



INTRODUCTION

 From a quantum perspective, to Aμ it is associated a particle, the photon.

 There is no mass term in the Lagrangian, hence Maxwell’s theory implies a massless photon.

 Maxwell’s theory works very well, as proven in the last couple centuries. But it has some

limitation too.

In fact:

 The masslessness of the photon cannot be proven. Only a lower experimental limit can be

given.

 The superposition principle can also be proven up to a certain precision.

 Adapting Maxwell’s theory to the quantum framework is not straightforward and somewhat

artificial.



NON LINEAR THEORIES

A lot can be said regarding non-Maxwellian theories. As we have pointed out, the two main

groups of theories that go beyond the standard one are those who predict a massive photon and

those who are non linear.

We will focus on these latter.

The non linearities can be divided into two classes:

 CLASSICAL NON LINEARITIES: when also at classical level we have non linear terms in

the Lagrangian

 QUANTUM NON LINEARITIES: when the non linearities are introduced to explain the non

linear behavior of QED beyond tree level.



NON LINEAR THEORIES

CLASSICAL NON LINEARITY

 On the macroscopic level the superposition principle is widely proven with a 0,1% precision (EM

field generated by a group of charges and currents, transformers, standing waves, diffraction patterns

in optic, X-ray crystallography, refraction…)

 Problems might arise at atomic or nuclear level. If we think of a charged particles as a localized

distribution of charge, then it is obvious from Maxwell’s theory that the field strength and, hence, the

electromagnetic energy increase as the charge is more and more localized.

 For atoms, linearity has been tested up to 109-1015 V/cm fields, the ones one can find in electron

orbits. Energy level distances in light atoms allow us to say that the experimental data are in

agreement with superposition up to 1 part in 106.

 In nuclei field strength of the order of 1019 V/cm can be reached. In this regime Coulomb energies of

heavy nuclei have been tested and found in agreement with linearity up to 1 part in 106.



NON LINEAR THEORIES

BORN INFELD THEORY

 Despite these constraining limits, efforts have been done to create a non-linear classical

theory. The main reason behind this effort is to avoid infinities.

 The first and most relevant try was that of Born and Infeld in 1934*.

There are 3 fundamental points that bring Born and Infeld to their theory:

 Principle of finiteness: a physical theory must imply only finite measurable quantities

 Parallel to relativity: the Lagrangian is deduced mimicking what happens in relativity

where the kinetic energy must take into account the light speed upper limit for velocities.

 Unitary principle: it exists only one physical entity, the electromagnetic field; matter

particles are considered singularities in the field and mass is a derived notion expressed in

term of electromagnetic energy (electromagnetic mass)

*Born M., Infeld L., 1934, Proc. Roy. Soc. London A, 144, 425



NON LINEAR THEORIES

BORN INFELD THEORY



NON LINEAR THEORIES

BORN INFELD THEORY

 Keeping in mind that

one sees that the term G2 is of the fourth order in the fields, whereas F is only quadratic. Hence it

is negligible unless we are extremely close to the field source.

Therefore, the BI Lagrangian can be simplified into

For this Lagrangian the equations of motion are



NON LINEAR THEORIES

where

BORN INFELD THEORY

 In terms of the fields they can be written as

One sees that these equations are Maxwell’s ones, just written for the field D and H.

Therefore studying BI electrodynamics is equivalent to studying Maxwell’s one in a non

linear medium whose magnetic susceptibility and dielectric constant are



NON LINEAR THEORIES

BORN INFELD THEORY

 The physical field E is non singular at the origin. It’s the unphysical D field that is singular.

Electrostatic, time independent

Spherical symmetry



NON LINEAR THEORIES

So

Other interesting features of Born-Infeld Theory are:

 The electron is seen as the discontinuity in the E field and its self energy is finite

 It’s the only non linear theory yielding no birefringence

 It predicts metastable orbits for scattering from a Coulomb potential

 It is derivable through string theory for between oriented open and closed strings in D=4



NON LINEAR THEORIES

QUANTUM NON LINEARITY

 Unlike what happens on the classical level, we have several evidences of the deviation

from linearity in the quantum regime. This is due to the uncertainty principle which

allows the momentary creation of electron-positron couple and subsequent annihilation

with creation of two photons.

 This phenomenon is known as light-light scattering.

 When two plane waves defined by the wave vectors k1 and k2 scatter, on top of the

leading linear term one has a small probability of them interacting like shown in the

diagram, transforming into two different waves with vectors k3 and k4



NON LINEAR THEORIES

QUANTUM NON LINEARITY

 Similarly to what happens with BI theory, even the effects of light light scattering can be

reproduced – for slow varying fields – by electric and magnetic permeability tensors

with* – in the low frequency fields (for fast varying fields see **) –

*: Euler H., Kockel B., 1935, Naturwiss., 23, 246

**: Akhieser A., Landau L., Pomeranchuck I., 1936, Nature, 138, 206



NON LINEAR THEORIES

EULER-HEISENBERG THEORY

 It is a generalization of what we have presented so far.

 Euler and Kockel derived the leading non linear correction due to vacuum polarization in

a constant background field. With their Lagrangian Euler and Heisenberg were able to

give a close form for all perturbative orders.

α

It’s called critical field. It is the field strength at which Dirac sea electrons

are expected to tunnel into the continuum and produce electron-positron

pairs. In modern terms it’s the Schwinger critical field that sets the threshold

for nonlinear QED to become relevant.



NON LINEAR THEORIES

EULER-HEISENBERG THEORY

 To the Schwinger critical field corresponds a magnetic critical field, which is the field strength

needed for the associated energy of a cyclotron pulsation for an electron to be equal to its rest

mass.

 Expanding EH Lagrangian to the quartic order in the perturbation field one obtains Euler and

Kockel’s results.

 Through their Lagrangian, Euler and Heisenberg were able to model the quantum vacuum

instability. Not only, picturing the pair creation process as the tunneling from the Dirac sea into

the continuum, they were able to compute the correct rate for the process.



NON LINEAR THEORIES

EULER-HEISENBERG THEORY

 This Lagrangian is valid in the case of a constant background field. In any case it has been

pointed out by Dunne* that it can be used also in the case of inhomogeneous fields through a

derivative expansion.

 Like Euler and Kockel’s result also EH Lagrangian has been computed for low frequencies,

the so called soft photon regime ω<<me.

 The result can be rewritten as

*: Dunne G.V., in From fields to strings: circumnavigating theoretical physics, Ian Kogan

memorial collection, edited by Shifman M,m Vainshtein A. and Wheater J. (World Scientific,

Singapore, 2004), vol 1, p. 445



EULER-HEISENBERG DIPOLE

EULER-HEISENBERG THEORY

 Euler-Heisenberg theory is being used right now in PVLAS and BMV (Toulouse)

experiment, which aims to show that laser beams can be deviated by a more concentrated

pulse. According to EH prediction, this effect should be visible starting from 100

petawatt.

 It predicts birefringence

 Due to the different dispersion relation for the two photon polarization it allows photon

splitting.

 The theory has been generalized for non Abelian fields, contributing to the study of gluon

fields.

 It can be applied in the context of string theory. If written in the proper time, it’s a useful

too to study gauge theories in curved space time and to investigate particle production on

cosmological scale.



EULER-HEISENBERG DIPOLE

 Deviations from Maxwell’s theory have been sought in terrestrial laboratories for a long time. Among these

many Euler-Heisenberg theory predictions like the Schwinger effect, vacuum birefringence under a strong

magnetic field or photon splitting in lasers.

 One might try to see if there are any astrophysical phenomena where the same deviations may be relevant.

Magnetars are stars endowed with an overcritical field (estimated 10-102 BC at the surface); therefore they are

apt to be used as a test for Euler-Heisenberg theory.

 Many consequences have already been studied: light lensing due to the optical property of the vacuum in

presence of a magnetic field(1), polarization phase lag(2), how quantum vacuum friction influences pulsar

spindown(3).

 We want to investigate how the nonlinearity of the theory affects the photon propagation, calculating the red- or

blueshift due to this. As a first step toward computing the effect for a real magnetar, we investigate the

magnitude of the EM shift felt from a photon that is emitted from an EH dipole endowed with overcritical field.

(1) : A. Dupays, C. Robilliard, C. Rizzo, and G. Bignami, Phys. Rev. Lett. 96, 161101 (2005)
(2) : J. S. Heyl and N. J. Shaviv, Mon. Not. R. Astr. Soc. 311, 555 (2000)
(3) : A. Dupays, C. Rizzo, and G. Bignami, Europhys. Lett. 98, 49001 (2012)



EULER-HEISENBERG DIPOLE

EFFECTIVE METRIC

 The consequences of non linearity on photon propagation are easily seen in the effective

metric formalism

 High energy excitations of a Non Linear (NL) electromagnetic theory on a fixed

background propagate in an effective metric that is written in terms of the background

metric, the background EM field configuration and on the details of the non linearity

of the theory.

 Let’s consider a characteristic surface for wave propagation Σ. Following Hadamard* one

assumes that the field itself is continuous on Σ whereas its derivative is not

*: J. Hadamard, «Leçons Sur la Propagation des Ondes et les Equations de

l’Hydrodynamique », Hermann, Paris, 1903

Discontinuity

tensor



EULER-HEISENBERG DIPOLE

Let’s take a general Lagrangian depending on the invariants F and G, defined above

The equations of motion are

Where

Applying the discontinuity the dynamics is described by



EULER-HEISENBERG DIPOLE

With some algebra one sees that he expression for g is given by the solution to a second order

equation for an auxiliary variable Ω

So the two effective metrics are given by



EULER-HEISENBERG DIPOLE

EFFECTIVE METRIC

 Keeping only terms linear in the perturbations and applying the eikonal approximation, which

allows to reduce the differential equations to a single variable, in the high energy limit the two

metrics can be written as

where the index 0 means that the quantities are evaluated at the background field.



EULER-HEISENBERG DIPOLE

ELECTROMAGNETIC SHIFT FOR AN EULER-HEISENBERG PHOTON

 The calculation of the redshift for non linear theories must be taken with care, because, in such

theories, the photon is accelerated by the non linearities. Therefore it doesn’t move on

background geodesics

 The motion is governed by

where the covariant derivative is constructed – for each polarization – with the effective metric.

 Defining

Where Kµ is a Killing vector of gμν (and hence of  𝑔 μν), one has



EULER-HEISENBERG DIPOLE

ELECTROMAGNETIC SHIFT FOR AN EULER-HEISENBERG PHOTON

 From the definition of redshift

 Using

one has

Conserved quantity



EULER-HEISENBERG DIPOLE

ELECTROMAGNETIC SHIFT FOR AN EULER-HEISENBERG PHOTON

 The shift can be obviously expressed in terms of the 00 component of the metric as

where rE is the emission point and rR is the reception point, conveniently taken at infinity

where the metric reduces to Minkowski’s, the flat one. This formula corrects the results given in

some previous papers, where a square root was added to the right hand side.

 In view of the previous results



EULER-HEISENBERG DIPOLE

 We specialize now to the Euler-Heisenberg Lagrangian in the case of zero electric field

 The derivatives of EH Lagrangian read*

 LGG has a divergent term that grows like ξ

*: J. Lundin, Europhys. Lett. 87, 31001 (2009)



EULER-HEISENBERG DIPOLE

 As we said, we use as background the magnetic field of a dipole oriented along the z axis

 Being the former expression of order α, the zero order solution for the field is sufficient to

obtain the first order correction

 Introducing the parameter

we have that



EULER-HEISENBERG DIPOLE

RESULTS



EULER-HEISENBERG DIPOLE

RESULTS
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EULER-HEISENBERG DIPOLE

RESULTS

 The shift is small for both the metrics. But for the first it’s positive and hence a redshift. For the second is negative,

therefore it’s a blueshift.

 The second grows faster due to the divergent ξ term in LGG.

 The plots show the values of the shift as function of θ for different values of λ that might be significant in the case we

wanted to approximate a magnetar with a simple dipole. In fact, we can imagine the photon being emitted at the

magnetar surface where the field is up to 100 times the critical one.

 The shift grows in absolute value for both polarizations. But for the first one it has a maximum at the equator whereas

this latter is a minimum for the second polarization.

 For a star of 2 solar masses and a radius of 10 km, the gravitational redshift would be 0,2. Hence we can see that our

result is comparable to the second polarization shift and a couple order of magnitude bigger than the one given by the

first metric.

 We expect the effect to be increased adding rotation to the dipole.

 These results have been submitted to CQG and presented in the MGM.



ACCELERATING PARTICLE IN BORN-INFELD

 In Maxwell’s theory we know what the EM field of an accelerating pointlike charge is. But we

also know that this field is singular at the source.

 We would like to obtain this field in the Born-Infeld theory, because we know that in this theory

the singularity is smoothed.

 Unfortunately, due to its non linearity, radiating solution of BI theories are not known.

 Our purpose is then to develop new methods to tackle this problem.



ACCELERATING PARTICLE IN BORN-INFELD

PROBLEMS IN CALCULATING THE POTENTIAL IN NL THEORIES

 How is the field of a relativistic charged particle that moves with 4-velocity Vα(τ) computed?

One computes the Liènard-Wiechert potentials

and from these obtains the fields by differentiation.

But these potentials are computed through the Green functions Dr(x-x’)



ACCELERATING PARTICLE IN BORN-INFELD

PROBLEMS IN CALCULATING THE POTENTIAL IN NL THEORIES

 By definition, Green functions are the impulse response of an inhomogeneous differential operator on a

certain domain, once we specified the boundary conditions.

 Via superposition, the convolution of the Green function with an arbitrary function gives the response of the

inhomogeneous operator to that function.

 If we lose linearity, we cannot exploit this property!

 The problem becomes even more difficult if the particle is accelerating.



ACCELERATING PARTICLE IN BORN-INFELD

RINDLER SPACETIME

 A different route to solve the problem is being investigated by us.

 Instead of computing the potentials and fields in the inertial reference frame where the

particle moves, one might compute them in a non-inertial, comoving frame where the

particle is at rest.

 Once one has those fields, it suffices to transform them back to the inertial frame.

 The most apt coordinate tranformation to describe a relativisic accelerating particle is that

of Rindler.



ACCELERATING PARTICLE IN BORN-INFELD



ACCELERATING PARTICLE IN BORN-INFELD

RINDLER SPACETIME

 The price to pay for having a simple equation is that now the coordinates are curved, to

keep track of tha fact that, originally, the frame was non inertial.

 In their covariant form, valid for every reference frame, Maxwell’s equations are

 Rindler’s metric can be written in many forms. Chosing

the solution is



ACCELERATING PARTICLE IN BORN-INFELD

RINDLER SPACETIME

 Now one simply has to transform back to the iniertial frame.

 In principle this method can be used also in the case of NLEM theories, in fact every reference to

Green functions has been eliminated.

 However there are some more issues to solve. If one is set to solve the differential equation in the NL

context, one has the equations of motions given by

Of course the appearance of the field in the denominator – especially inside a square root

– complicates the equation a lot and makes the method mathematically difficult to apply.



ACCELERATING PARTICLE IN BORN-INFELD

APPROACH

 We start from Maxwell’s equation in the Rindler spacetime. The one relevant to us read

where g is the particle acceleration.

 So the electric potential is defined by



ACCELERATING PARTICLE IN BORN-INFELD

APPROACH

 The Born-Infeld constitutive relation is*

which can be expressed in terms of the potential

*: Ferraro R., 2013, J. High Energy Phys., Vol. 2013, 8



ACCELERATING PARTICLE IN BORN-INFELD

APPROACH

 Because of Born-Infeld’s theory peculiar structure, we can use the equation for the divergence of the

electric field, provided that we use the field D instead of E. So, the dynamical equation for our field is

given by

which a minus sign appeared in the left had side because we consider a point charge and, for simplicity,

we have chosen the electron, but taking the charge value q positive.

 Φ is the full Born-Infeld field, which is composed by a Maxwellian part plus a small correction



ACCELERATING PARTICLE IN BORN-INFELD

APPROACH

 Using the binomial series

we can expand the square root at the denominator in our field equation, getting

 We don’t need to worry about convergence because we have that the binomial series is convergent for

In our case, α<0 and |x|≠1



ACCELERATING PARTICLE IN BORN-INFELD

APPROACH

 Expanding the field Φ in the first term in its Mawellian component plus the correction, one gets

 From this expression we can see that, formally we have an operator  𝑂 acting on the field, where  𝑂 is

composed – just like the field – by a Maxwellian part plus a correction. In other terms

 By definition



ACCELERATING PARTICLE IN BORN-INFELD

APPROACH

 So

yielding, for our equation

 Expanding the remaining Φ’s

Where terms of higher order in φ have been neglected



ACCELERATING PARTICLE IN BORN-INFELD

APPROACH

 Because the Mawell field is much bigger than the correction the leading term in the last expansion is

the one where only Φ0 appears; hence

from which



ACCELERATING PARTICLE IN BORN-INFELD

APPROACH

 Now we perform the change of variable

which preserves the measure

 We obtain the final equation



ACCELERATING PARTICLE IN BORN-INFELD

APPROACH

 The equation governing φ is wave equation, which explicitly exhibits the axial symmetry of the

problem and with a source that, unlike what happens in the common case, it isn’t localized on a

specific wordline. Instead it is a diffused field that cover the entire spacetime.

 The memory of the particle position is carried because the source depends on Φ0, which depends on the

workdline.

 To solve this equation, the most straightforward method is – as usual – to compute the Green function

and then covolute it with the source.

 This procedure is now sound because the theory has been linearized



ACCELERATING PARTICLE IN BORN-INFELD

APPROACH

 Luckily, the Green function for such an equation has already been computed. In fact, in [1]m the

authors show that, for an accelerating Mawellian point particle, described in Rindler’s spacetime, the

wave equation reads

which is basically the one we need, but for some numerical factors.

 This reference allows us to take



ACCELERATING PARTICLE IN BORN-INFELD

APPROACH

 For the same reason

 From this we can compute the source which results to be



ACCELERATING PARTICLE IN BORN-INFELD

APPROACH

 Therefore, the integral we need to compute is

 Unfortunately, we weren’t able to find any analytical methods to perform the integration.



ACCELERATING PARTICLE IN BORN-INFELD

APPROACH

 The main reason why the integral is difficult to compute is that, like we have pointed out before, the

source is a field. Hence, instead of the usual Green function divergence, we have two divergencies.

 We are now trying to compute the result numerically. In particular, we want to expand each

denominator in series and compute, term by term, the integral of the product. This should be equivalent

to performing a purely numerical integration, but shortens the running time of the program.

 To implement our method we must find the numerical infinity, that is, to find when the result for two

consecutive values of the integration window aren’t indistinguishable within the numerical accuracy.

 Last, but not least we need to prove the convergence, that is the we can indeed cut the series at a certain

order because the next one is negligible.



CONCLUSIONS

 The context of non-Maxwellian theories is very lively and interesting

 We have presented a couple of applications that might have some physical relevance and that might

give us means to check, in the astrophysical context, if non linear theories are nor valid.

 We have shown a possible application of EH formalism to the case of a overcritical magnetic dipole,

which is a toy model toward a more consistent model of a magnetar.

 In this framework the results obtained (submitted to CQG and presented in MGM) were comparable or

two orders of magnitude smaller with respect to the gravitational redshift as expected. In both cases the

shift, in absolute value grows in going from the equator to the poles. But one is a redshift, the other a

blueshift.

 We have tackled the problem of computing the field for an accelerating particle in the Born-Infeld

theory, underlining the difficulties that arise because of the non linearities

 Through linearization at first order of the theory we have come up with a setup that reduces the

problem to a purely computational task.
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