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Sind wir vielleicht hier, um zu sagen : Haus,
Brucke, Brunnen, Tor, Krug, Obstbaum, Fenster,
hochstens : Saule, Turm ... aber zu sagen,
verstehs, oh zu sagen so, wie selber die Dinge

niemals innig meinten zu sein.

Rainer Maria Rilke, Die neunte Elegie
Duineser Elegien
Im Insel-Verlag, Frankfurt am Main, 1962






Preface

In the Last figteen years the attempts al a unified description of
the fundamental physical interactions by gauge §<ield theonies have given nise
to exciting developments in particle physics.

In this book, which grow cutof Lectures 1 gave in the Last few years
in  sevenal places, at Strasbourg Univensity, at the 1980 XIV Curndo Centno
Amenicano de Fisica, held at the University of Panama, at the Federal Universi-
1y of Rio de Janeino and the Centrno Brasileiro de Pesquisas Fisicas, T thy to
explain in an efementary way the basic notions and principles of gauge theonies.
In panticulan, the Salam-Weinberg model of efectro-weak interactions is developed
in some detaif including {ts verification in the study of neutrino-Lepton
scattening and the parnton model. This model {s at phresent the most successful
attempt at a unified theony of physical interactions.

The aim of this book is to give a sel§-contained introduction to these
theonies.

The neader will be assumed to know basic quantum mechanics and special
nelativity togethen with the efements of group theony needed fon these disci-
plines ; a knowledge of the qualitative description of elementary particles and
thein quantum numbers will also be required, as well as the elements of the
Feynman diagrams technique.

The §inst Chapten contains the basic noiions of classical §ield
theony and the alf impontant Noether's theorem. An introduction is also given
to solitons and instantons and the topological quantum numbens, subjects
which anose §rom the study of the non-Linean field equations in gauge theonies
and which have been developed in the necent few yeans.

Besdides the study of the electromagnetic and the Yang-Mills gauge
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fields, a chapter on the gravitational gield (s included. We think that this
chapten is of interest fon fwo neasons : finstly, 4t may be suggestive foxn the
graduate students to Leain that there ane several common features between this
and the Yang-Mills 4ield-non-Linean equations, simifar covariance behaviowr

04 centain quantities such as the gauge §ield and ifs souwrce, under the
cornesponding groups. Secondly, {t 48 precisely the unification o4 gravitational
with stnong, electromagnetic and weak interactions, which present the greatest
challenge to theoreticians nowadays. 1t would be stimulating that the young
neadens acquine a basic knowledge of the situation for each gauge f§ield,

gravity included.

Perturnbation caleulations, nenommalization and path-integrhal quantiza-
ion ane not studied in this book. Two excellent books on this subject which
were necently published, one by C. Nash, the othen by J.C. Taylor, are 4indica-
ted in the bibLiography ; they §ully develop the basic ideas and techniques in
this domain. The neadern s invited to consult excellent neponts and nreview
anticles mentioned in the bibLiography.

A section in Chapten 1X deals with very nrecent speculations on
possible Lepton and quark sthuctures, forn which there 48 30 fan no experimental
evidence. An intnoduction to the SU{5) model of grand unification is presented
in Chapten X. Problems are given fon each chapten and solutions arne collected
at the end of the book.

1 am most grateful to Abdus Salam, Dinector of the International
Centrne fon Theoretical Physics, for sponsorning my Lectures in Panama and to
Mario Bunge for his support and encouragement ; my best thanks are also due
2o B. Fernandez and his colleagues of the Univeasity of Panama, to R. lobo,
E. Lernen and thein colleagues of the Centno Brasileino de Pesquisas Fisicas
and 0§ the Univernsity of Rio de Janeino, nespectively gon the humanfy warm and
kind hospitality. The authon greatly profited from conversations with J.J.

Giambiagi, Ch. Ragiadakos, C.A. Savoy, J.A. Martins Simoes and D. Spehlenr on
topics of this book.
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1 am deeply grateful to the authons and to the Nobel Foundation for
thetn kind peundssion to neprnint the Lecturnes given by the 1979 Nobel Launeates
Shelden L. Glashow, Abdus Salam and Steven Weinberg. 1 am equally grateful to
the Physical Soclety of Japan and to the authon fon kindly permitting the
neproduction of the Table 1X grom the anticle by C. Baltay in the Proceedings
of the 19th Intewnational Conference on High Enengy Physics, §85-903, Tokyo

(1975).

Madame Enice Nonth prepared the typescrnipt with great ability and
patience, my waunest thanks go to hen.

J. LEITE LOPES

Strasbourng, January 1981

ix






Contents

INTRODUCTION .. w0 i e et e th et i tn v e v e e e e e e e e

Table
Table
Table
Table
Table
Table
Table
Table
Table

CHAPTER

— e e
e e e e e e

I:

N =

W 0o N OV O;C bW

I - Basic interactions

I - Observed fermions

III - Observed bnsons ..

IV - Quark quantum numbers

V - Lepton quantum numbers

VI - Basic fermions .. .

VIT - Basic boson fields e e e
VIIT - Quark structure of hadrons .. .. .. .
IX - Questions

Field equations, conserved tensors and topological

quantum numbers

Free field equations .. . « « v vv v v v o ve o oo wn w e

Non-linear field equations for a single scalar
field

Non-linear vector field equations

Field equations and action principle .. .. .. .. .. .
Examples of lagrangeans

Noether's conserved tensors

Examples of Noether tensors -
Conserved Noether tensors for specific fields
Soliton solutions of classical non-linear field
equations and topological quantum numbers

Problems

X1

[y

0 0 N N OO, N

13
14

24
27
38
39
44
48
54

62
80



CHAPTER 11

: The electromagnetic gauge field

I1. 1 -
I1. 2 -
I1. 3 -
II. 4 -
IT. 5 -

Field interactions « « « v v v co i e e it or vt ve e
The electromagnetic field as a gauge field .. .. .. .
Maxwell's equations and the photon propagator ;
gauge fixing conditions

The energy momentum tensor of fields in interaction
with the electromagnetic field .. . « « o o v oo o w0
Non-integrable phase factor and the integral formu-
lation of gauge field theories ..

PrODTeMS oo co ottt et et e ee e e ee e ee e e e e ee ee e e e e e

CHAPTER IIT :

Examples of electrodynamical systems

II1. 1 - Scalar electrodynamics

111. 2 - Proca vector field electrodynamics

III. 3 - Spinor field electrodynamics

II1. 4 - Scalar and Proca electrodynamics : alternative
formulations

Problems .. « oo oo v v vv v e e

CHAPTER IV : The Yang-Mills gauge field .. .. .. ...

IV. 1 - The isospin current .. . o @ o o i oi i oo o0

IV. 2 - The Yang-Mills isospin gauge-field .. .. .. .. .. .

IV. 3 - The isospin gauge field as a mixture of an abelian
gauge field and an isovector .. ...

IV. 4 - Lagrangean of a Yang-Mills isospin gauge field in
interaction with matter C e e e e e e

IV. 5 - Field equations and non-linearity of the inter-
action « o v we e we e .

IV. 6 - Remarks on the covariant derivative c e

IV. 7 - Enrergy momentum tensor for a Yang-Mills system .. ..

Xxii

83

84
86

a3

96

98
106

109

110
111
113

114
119

121

122
128

132

134

141

142
143



IV. 8 - Examples of Yang-Mills isospin gauge systems

of fields .. .. .. .. ..

IV. 9 - The global SU(3) group - « « o v v v ti v v v e
IV. 10 - The colour gauge field .. . .. ...

Problems
CHAPTER V. : The gravitational gauge field .. .. « o v oo v oo o oo
V. 1 - Introduction
V. 2 - Groups of local transformations and covariant
derivatives «v wv o o th e ee e e e e e e e e e e e e

V. 3 - Covariant derivatives of tensors in general relati-
vity : the gravitational gauge field

V. 4 - The lagrangean of matter tensor fields in inter-
action with the gravitational field .. .. « « o«

V. 5 - Einstein's equation of the gravitational field .. .

V. 6 - The energy momentum of the gravitational field

V. 7 - Gravitational interaction with an electromagnetic
Field o o vo v e e e e e e e

V. 8 - The tetrad formalism

V. 9 - Dirac's equation and current in general relativity..

V. 10 - The Dirac Field energy-momentum tensor .. .. .. ...

V. 11 - Gauge fixing conditions

Problems .. .

CHAPTER VI. : Weak interactions and intermediate vector bosons ..
VI. 1 = Introduction « « s co v si v it i e e e e e e e e
VI. 2 - Charged weak currents -

VI. 3 - The intermediate vector boson field

VI. 4 - High-energy divergences in the Fermi and vector
boson theories .. « « w v w0 W

Problems .. . .. .. .

xiii

145
146
150

153

157
158

158

162

167
170

175

181
182
187

193
195

196

199

200
200
205

208

216



CHAPTER VII :

VII.
VII.
VII.

1 -
2 -
3 -

Problems

CHAPTER VIII

VIII. 1 -
VIII. 2 -
vIII. 3 -
VIII. 4 -
VIII. 5 -
VIII. 6 -
VIII. 7 -
VIII. 8 -
VITI. 9 -
VIII. 10
VIII. 11
VIII. 12
VIII. 13
VITI. 14
VIII. 15
VIII. 16
VIII. 17
Problems

The Higgs mechanism

The notion of spontaneous symmetry break-down
Goldstone bosons .. .. .. . o oo
The Higgs mechanism

: The Salam-Weinberg model .. .. . .. . .

Unification of the electromagnetic and weak inter-
action theories : the Salam-Weinberg model .. .. .. .

The SU(2) @ U(1) gauge invariant lagrangean
Generation of the electron mass

The mass of the physical Higgs field .. .. .. .. « o

The massive vector bosons G ee e e

The electromagnetic field and the Weinberg
angle

The effective Salam-Weinberg lagrangean for
electrons and neutrinos -
Parameters and physical constants in the Salam-
Weinberg lepton model

The neutral lepton currents

- Extension of the model to the other leptons .. .. ..
- Neutrino-lepton scattering and the experimental

tests of the Salam-Weinberg model .. .. .. .. ..

- The Salam-Yeinberg model for hadrons : the GIM

mechanism ; the quark masses

- The Salam-Weinberg quark currents .. .. ..
- The suppression of the strangeness-changing

neutral current .. .. .. .. .. .. . ..

- Estimates of the quark masses .. .. ..
- The parton-quark model

nucleon scattering

xiv

o v sa er e es we

The value of the Weinberg angle for the neutrino-

223

224
230
235

240

241

242
246
252
255
256

261

264

269
271
273

274

283
289

296
299
300

319
323



CHAPTER IX : Gauge theory with lepton flavour non-conservation ..

IX. 1 - SU(2) 8 U(1) gauge theory with heavy leptons
IX. 2 - Speculations on lepton structure

Problems

CHAPTER X : Attemptsata “grand” unification : the SU(5) model ..

X. 1 - The SU(5) gauge fields and generators

X. 2 - Hierarchy of spontaneous broken symmetries ;
Lepto-quark bosons ..

X. 3 - Concluding remarks .. .. « v w0 o0 o0 oo o

Problems
Solutions of Problems

Reprinted Nobel lectures :

Steven WEINBERG, Conceptual foundations of the unified theory
of weak and electromagnetic interactions, Les Prix Nobel 1979
Abdus SALAM, Gauge unification of fundamental forces, Les Prix

Nobe] ]979 e es ae ea e ee se
Sheldon Lee GLASHOW, Towards a unified theory : threads in a
tapestry, Les Prix Nobel 1979

REFERENCES . « o w0 o e o

INDEX

XV

325

326
331

333

337
338

350
359

362

365

405

423

449

461

479






Introduction

1. - You all know that the philosophical dream of physicists has always

been to reduce (and thus "explain®") the enormous varicties of material bodies

and events in nature to configurations of a small number of basic constituents and
their interactions -the Greek atoms, the atoms and molecules of the chemistry and

physics of the XVII th century, the elementary particles of the last fifty years,

the quarks, leptons and fundamental bosons of today.

The ninety two elements of the Mendelejev table were explained in terms
of three particles, the electron and the proton and neutron ; these, together
with the photons, responsible for the electromagnetic interaction among electrons
and nuclei, were the primordial objects of the physicists around 1934.

The later discovery of pions, postulated by Yukawa in 1935, to
describe the nucleon interactions, and then of muons and neutrinos, of strange
particles and ressonances, seemed to suggest that the underlying reality of
fundamental particles was perhaps too rich to be possibly reduced to a small
number of objects.The number of supposed elementary particles soon became
at least as large as the number of elements in the Mendelejev table

2. - On the other hand the idea that physical forces propagate in space with a
finite velocity through the action of a field was introduced by Maxwell and
Lorentz in electrodynamics. This idea was further developed by Einstein and

in his relativistic theory of gravitation -perhaps the most beautiful achievement
in theoretical physics up to our days- the unifying power of the descrip-
tion by the field concept was greatly enhanced, the gravitational field being
identified with the metric tensor in a Riemannian space-time.

GFT - B



With the development of quantum mechanics and of the principles of
quantum field theory, physicists were led to associate a field to each
particle. However, the large number of elementary particles which were discovered
in the fifties discouraged many physicists in their belief of the unifying réle
of field theory. The efforts developed by Einstein to find a unitary theory
of the gravitational and the electromagnetic field, seemed meaningless to
quantum and particle physicists since many other fields would have to be taken
into account in such a unifying theory. It was mainly in the domain of strong
interaction physics that the notion of field seemed useless.

The developments in the last ten years which culminated with the
Salam-Weinberg model of gauge fields which unify electromagnetic and weak inter-
actions and, more recently, the discovery of quantum chromodynamics, restored
the full theoretical value of field theory. It is believed that the unification
which we must seek is rather that of the basic forces of nature, rather than
of the bodies and their constituents. The elementary particles are now reduced
to Teptons and quarks but the number of these admitted basic objects seems to
be increasing. Instead, the Salam-Weinberg model opened up a new style and a new
aim, in the spirit of the great unification of physical fields as dreamed of
by Einstein. Strong interactions are now assumed to be described by massless
vector gauge fields associated with the colour degrees of freedom of quarks.

And this theory is expected to reproduce the strong interactions between hadrons,
although for the moment mathematical difficulties have been preventing an
early completion of this program.

Current research actively develops efforts in the sense ofa "grand"
unification of all the basic interactions of nature, such as the Georgi-Glashow

SU(5) model which attempts to unify the strong, weak and electromagnetic
interactions.

3. - We know that the elementary particles are classified according to their spin
into bosons -particles with integral spin, obeying therefore to the Bose-
Einstein statistics- and fermions particles with half-integral spin and which
obey the Fermi-Dirac statistics.



I will show you now a table (Table I) which indicates the basic physi-
cal interactions between particles. These are in small number : all forces in
nature result from the interplay of : 1) gravitational interactions which
are created by and act upon all forms of energy and matter ; 2) weak interactions,
which act between leptons (electrons, muons, tauons and their neutrinos) and
also hadrons ; 3) electromagnetic interactions, created by and acting upon all
particles with a charge, a dipole moment ; 4) strong interactions, which
act only on heavy particles called hadrons. As we said above, it is today
believed that these interactions may be described in a unified way : massless
vector fields -the gauge fields- are defined in association with the postulated
invariance of the theory under gauge transformation and these fields give rise
after a spontaneous break-down of the symmetry, to the fields of the weak and
electromagnetic interactions. The strong interactions are assumed to be governed
by another gauge theory with unbroken symmetry, the colour SU(3) gauge group,
which introduces eight massless gauge fields, the gluons.




TABLE I - Basic interactions
strength of .
Interactions Transmitted by Gauge fields
coupling constant
me2 -4 |spin2massless general coordin.
Gravitation ?—2- ~0.2x10 field transform
€ quantum : graviton gauge field
—
. 1
(mpc)2 -5 spin 1 massive fields
“Weak & ~1.01x10 |
- Fas quanta : w*,W7, 2% | Jsu(2) au(l) !
* t fThe SU(5)
e 1 2 spin 1mass1§;s : gauge fields! model
Electromagnetic oS g ~ 10 ield ! K
: c 37 quantum : photon i defines
2 i 24 gauge
Fc 10 for hadro-[spin 1 massless » Bfields
Strong ™C hic. matter {fields colour SU(3)
“lomentum transfer gauge fields:
dependent as(QZ)for gluons i
quark interaction !
1

Supergravity postulates a massless spin 3/2 quantum -the gravitino- in addition
to the graviton

TABLE II - Observed fermions
Display observed
Leptons weak and electromagnetic e-,ve;u',vu;T',vT
forces and their antiparticles
(spin 1/2)
Baryons weak, electromagnetic nucleons;hyperons;

and strong forces

baryonic resonances
(spin 1/2, 3/2,...)




TABLE IIl - Observed bosons (1980)

Photons

Hadronic Mesons Ty, Py Ky ¢
D, v, T, etc.

TABLE IV - Quark quantum numbers

Flavours Q I I3 B Y ) c b t{?)
uy 2/3 172 172 1/3 1/3 0 0 0 0
d, ca3lye [zl s Tws | o 9 o | o
s, |-w3| o o [ w3 {-23/-11] 0 o | ¢
c, 2/3 0 0 173 - 2/3 0 1 0 0
ta ? 2/3 0 0 1/3 - 2/3 0 0 0 1
b, -1/3] o 0 V3 |-23 | 0 0 -1 0
(?)
Q = charge B = baryon number Y=B+S-C+b-t
I = isospin Y = hypercharge 1
I, = third component of S = strangeness Q=1I4+5(B+S+C+
isospin C = charm *b+t)
b = beauty (bottom-ology ; bottomness ?)
t = ton-ology (tepness ?)
Each quark is assumed to exist in three states which differ among themselves
only by a new quantum number, the colour a = 1,2,3




TABLE V - Lepton quantum numbers

Le Lu L
vu 0 1
' 0 1
Ve 1 0
e 1 0

)

v 0 -1 0
u 0 -1
Ve -1 0
et -1 0
v 0 0 . 1
T 0 0 1
T 0 0 -1
Vo 0 0 i -1

La : a-onic lepton quantum number



TABLE VI - Basic fermions
Leptons (ve, e) ; (vu, u) s (°r’ T) 5 ... (?)
Quarks (ua, da) H (ca, sa) 3 (ta, ba) S )
a = green, yellow, blue
TABLE VII - Basic boson fields

I

fless field AY

abelian gauge mass-

Gauge field Broken field Quanta
Gravitational 40 component ' spin two
gauge field | no graviton
Three massive vec- !
Weak and electro- | Four vector tor fields W' spin one
magnetic ' gauge fields wu* % and one Wt 70
_— ’ 3 9’

and photon vy

Colour fields

| Eight vector
massless gauge
fields

!
|
t no
|

spin one
gluons

Supergravity introduces a massless spin 3/2 field in addition to the spin

two graviton.

The spontaneous breakdown of gauge symmetry to generate boson masses, is

carried out by certain scalar fields called Higgs fields. Higgs bosons are

therefore assumed to be also basic particles but they, as well as the
vector bosons W and Z, have not been observed so far (as of November

1980).




TABLE VIII - Quark structure of hadrons

l 1) Hadrons are colourless

i _

! 2) Hadronic mesons are assumed meson field = T q.q',
i to be formed of a pair quark- ¢

! antiquark (summed over colours) thus + _ -

{ ™= dyupt dyupt daug
1 K+= g

]

1UY1* SpUpt sS3us3

where ¢ =1,2,3 or g,y,b

33) Baryons are constructed out baryon field =

of three quarks, their field

%1¢ 91y b :
wave functions being antisym- =N Q. Qo G i
metric 2g "2y “2b l
q3g q3y 93p !
' thus
A = ugdysb+ ubdgsy+ uy bsg -
- uddbsy- uydgsb- ubdysg

L

TABLE IX - Questions

Are leptons to be associated to quarks as in Table VI or are they
to be associated to hadrons, observable particles like them ?

Are new sub-leptonic particles to be associated to quarks to
give a unified description of leptons and hadrons ? Are therefore

leptons point-like or do they have a subtle structure ? Do leptons with
spin 3/2 exist ?

Are the fundamental bosons without structure ? And quarks ?
Is the SU(5) model enough for grand unification ?




The classification of observed fermions and observed bosons is
shown in Tables II and III.

It is today assumed that the binding of certain basic particles called
quarks give rise to hadronic matter. Quarks, with their defining quantum numbers,
are shown in Table IV. As quarks have not been observed, it is assumed that their
mutual interaction increases strongly with their distances and they are in this
way, confined, not to be found in a free state. Observed would be only states
with zero colour and quarks exist in three different colour states. Besides
quarks, there exist the leptons, namely, the electrons and electronic-neutrinos,
the muons and muonic neutrinos and the tauons and the tauonic neutrinos. Both
quarks and leptons are supposed to be the basic pieces of all matter (Tables V-VI).
TableVIII indicates the quark structure of hadronic matter.

4. - The aim of this book is to give @ self-contained introduction to the theory
of gauge fields, which plays a basic role in the description and unification of
the basic physical interactions.

The reader will be assumed to know the foundations of quantum mechanics
and of the special theory of relativity. For the sake of completeness, we dedicate
the Chapter I to the establishment of the basic equations in particle physics,
namely the equations for free particles described

a) by scalar fields ; this is the case of spin zero bosons

b) vector fields, which describe particles with spin one such as the vector bosons
(and the photon for massless real fields)

¢) Dirac spinor fields, which apply to particles with spin 1/2,

d) Rarita-Schwinger vector spinor fields, which describe fermions with spin 3/2 ;

e) Symmetric second rank tensor fields, which describe particles with spin 2 ;
the case of such massless tensor field applies to the description of the gravita-
tional field as will be seen in Chapter V.

In addition, dual or pseudofields are defined and this allows us to
introduce the currents constructed with Dirac fields and which play a central

role in the theory of weak interactions.
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The establishment of these equations can be made in a very simple way
by postulating 1in each case, the existence of only one such independent field,
and of no other field of lower tensor or spinor-rank. The establisment of some
usual non-linear field equations is also made by a similar method.

Still in Chapter 1 , we recall the lagrangeans from which these equa-
tions may be derived and the all-important Noether-theorem. A detailed derjvation
of the conserved Noether tensors is given since Noether conserved quantities, such
as the energy and momentum, the angular momentum, the electromagnetic current, the
isospin currents, play a special role in the theory.

HWe thought it would be helpful to the reader to have the expression

of some of these physical quantities, deduced in a detailed fashion from the
lagrangeans.

An introduction to the study of the soliton and instanton solutions
of non-Tinear field equations which appear in gauge theories, is given ;
these solutions introduce the important notion of conserved topological numbers,
a notion which does not follow from Noether's theorem at all, but is rather
associated to topological properties of those solutions.

In Chapter II, these notions and equations are applied to the study of
the electromagnetic interactions. The electromagnetic field is the first example
of a gauge field and the presentation of Maxwell's theory under the gauge field
view point is beautiful and instructive. The generalization of this idea, by Yang
and Mills,to the so-called non-abelian gauge fields, was an important step taken

in 1954, and which ultimately made possible the recent developments in particle
theory in the last ten years.

The Yang-Mills gauge field is studied in Chapter IV. Its origins are
recalled, the field equations and the corresponding lagrangeans are given and
the important case of the colour gauge field is described.
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We thought that a study of the gravitational field as a gauge field
would be important for two reasons : 1) it would be suggestive for the young
readers to see that there are many common features between the gravitation field
and the Yang-Mills field -non-linearity of the equations, covariant properties of
certain quantities such as the gauge field ijtsef and its source, similar beha-
viour, from the point of view of covariance, of corresponding equations. Secondly
it is precisely the unification of the gravitational interactions with the other
ones -strong, electromagnetic and weak- which presents the greatest challenge
nowadays. I believe it would be instructive that this treatment of the gravita-
tional field be included in a book dedicated more to the study of the other
interactions, even at the price of having this Chapter somehow disconnected
from the following chapters.

The remaining chapters are dedicated to introduce the ideas and tech-
niques needed to a detailed study of the Salam-Weinberg model, which describes in
a unified form the electromagnetic and the weak interactions.

Finally, in Chapter X, we mention the recent attempts at a “"grand"
unification of the electromagnetic and weak forces with the strong interactions
and present an introduction to the study of the SU(5) model, the simplest such model.

It is our hope that this book, even in its form not completely homo-
geneous, due of course to the author's fault but also due to the presentation
of recent theories still under intensive investigation, it is our hope that it
will help young graduate students to follow a hopefully clear path which will
Tead them further in the study of particle physics.






CHAPTER |

Field Equations, Conserved Tensors and
Topological Quantum Numbers
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I. 1 - FREE FIELD EQUATIONS

Elementary particles are described by fields which obey certain
equations, the so-called relativistic wave equations. These fields have basic
properties which follow from a postulated invariance of the wave equations
under certain groups of transformations, the symmetry groups. The latter are
suggested by experiment. Examples of these symmetries are the independence of
the laws of physics from the origin of time and from the position and orientation
of laboratories in ordinary space. Invariance of the wave equations under the
groups of time and space translations and rotations leads to the important
principles of conservation of energy and momentum and angular momentum.

The most important invariance principle in field theory is the princi-
ple of relativity. It states that the laws of physics do not depend on the
choice of an origin for a coordinate system and for the counting of time ;
nor do they depend on the spatial orientation of this coordinate system nor on
the state of rectilinear and uniform motion of the laboratory. Mathematically,
this principle imposes that the equations of motion be invariant under the
proper orthochronous Poincaré group. Wave fields are assumed to belong to repre-

sentation spaces of this groupl'lz) ; their space-time geometrical nature is

thus determined and the fields can only be scalars, spinors, vectors and
higher order spinors and tensors under the Poincaré group.

Experiment has shown, after the discovery of a number of elementary
particles, that there exist fields which, besides their Poincaré geometrical
nature, have internal degrees of freedom. They may be scalars, two-component
spinors, three-dimensiona) vectors with respect to certain additional symmetry
groups related to internal quantum numbers such as jsospin, flavor, colour
and so on. This internal degree of freedom results from the invariance of the
equations of motion under certain groups of transformations acting on the
field regarded as an entity in a new internal space - such as the group U(1)

of phase transformations of complex fields or the group SU(2) of
phase operator transformations of isospinors and so on.
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Whereas the Poincaré invariance of the equations of field theory is
universal the invariance under internal symmetry groups is obeyed by specific
field models as in chromodynamics ; there are also internal symmetries which
are only approximate, as in flavordynamics. And the recent discovery of a
mechanism of mass generation by spontaneous break down of certain subgroups
of an internal symmetry group has been of the utmost importance for the
formulation of the current unification models of physical interactions.

In this paragraph, we shall establish the equations of free fields
with respectively spin zero, spin one half, spin one, spin three-halves and
spin two by a simple method which consists in postulating, in each case, the
existence of only one such independent field and of no other field of lower
tensor or spinor rank.

a) Scalar field : let us assume that we are given a scalar field o(x), i.e,
such that under a proper, orthochronous Poincaré transformation of the geometri-
cal frame of reference

A l“v xV

b v

Py 9 2 = 9 (1. 0)
det g =1, 2° > 1.

transforms like :
@' (x') = o(x)

We are told then that there must exist no other scalar independent from ¢(x).
Now the equipement of space-time analysis gives us the differential operator

_ 9
ap z 3;3 and the metric tensor :

[ia)
n

0 for pu#wv

%0 %7911 %" 93" 933" 1

Thus we may form a four-vector 3, ¢ and a tensor 3, 3, ©. With the latter and
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g we obtain a new scalar* :

Huv
- H LV
0e=9, o 3 0

In view of our postulate which forbids another scalar, built out from
©w(x), independent from «(x), we shall necessarily have :

aop+be =0

The ratio % will be called m2

and this is the Klein-Gordon equation for a
free field

co+m =0 (1. 1)

m is found out to be the mass of the particles described by the field. Note
that we have elected a systemof units in which

ﬁ =1, ¢c=1
and the constant m2

above has the dimension 2—2 since the Compton wave- -
length associated to these particles is

i

Azﬁ'l—é-

If besides (x), we are given another scalar, p(x) independent from

®(x) and forbid the existence of a third independent scalar we are led then to
write

D@=2aw9+gp

and the requirement that when o(x) is not present we get equation (I. 1) gives:

(1. 2)

is the source of the scalar field «o(x).

(o + mZ) o(x) = g p(x)

g 1is the coupling constant, p(x)

Now we need another assumption, which is rather a quantum-mechanical

result in the theory of representation of the rotation group and of the Lorentz
group : a particle with spin s = 0,1,2,..., is described by a field with 2s+1

We stop at second derivatives. A more general equation than (I. 2) is :

F(@) (o + m2) $ () = g p(x)

where F is a function of the operator
In general,

equations.

. 0 0 ; this is the Pais~Uhlenbeck equation.
locality and causality properties are lost by such higher-order
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independent components, whereas if s = 1/2, 3/2, ... the number of independent
components is 2(2s + 1).

b) Yector field : let us now assume we are given a vector field #¥(x) and
forbid the existence of any scalar function built out of ¢" (which then would

describe a spin O particle) and of any other vector independent from ¢“(x);
under the transformation (1. 0) the vector field transforms in the following

WAy
vl [ !
oMix) = eY(x)
dith ¢(x) we construct a tensor 3%" and another 3%3°t". And with this we

get a vector :

o ®u - gng aa 33 $U

By our assumntion we must have then :

(o + mf) o

"
o

d |-
and 3,0 =0

since au¢“ is a scalar made with ¢”. This gives us three independent compo-

u

nents for ¢~ which thus describes spin 1 particles.

If we are given two independent vectors, ¢“(x) and j"(x) and
forbid the existence of any other independent vector and rule out the existence
of any scalar then we get

(o + m2) ¢ =g j¥

X U
We could also have another postulate : there exists only a four-vector A (x)
and no other four-vector can be different from zero, as well as no scalar.
This gives us the massless free field equations

o A*(x) = 0
(1. 4)
3, A¥(x) = 0

Massless free fields are described by only two independent field components.

GFT - C
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c) Dirac's equation for spin 1/2 field

If we are given a Dirac spinor w(x) (together with the matrix
machinery) which transforms in the following way, under the group (I. 0) :

¥'(x") = D(e) w(x) ; D(e) = exp (- 7z o"” €,
MY e ) =g 7 (FyY -y ) = o
we see that

Bu\b

is a vector-spinor and hence i y“ au Y is another spinor

o i M
P =1 Yap au wb

If we forbid the existence of any other spinor independent from ¥ we are then
led to the equation :
. Ju
(iv'a,v-my =0 (1. 5)

for a free spinor field.

In the presence of a source one obtains the equation
(iYuau‘l"mlb):p

where p  is a spinor linearly dependent on . Thus :

ge®y, or
= Y
p 9y, o v

etc

The number of components is here four, due to the existence of negative-
energy states.

d) Rarita-Schwinger equation for spin 3/2 fields

Suppose we are given a spinor-vector w;’(x) and say that this is



- 19 -

the only independent field of this nature ; suppose further that there exists
no pure spinor, which would describe spin 1/2. With wau we can form two
spinors, namely :

ey Yv =y U
and

XS99 =23 ¥

We see then that the equations :
(v, -mu*=0

Qo . a
v ¥i=0 5 3 =0 (1. 6)

1 ' - a 8
’»I) a(x ) it [D(E)]aal 2 8 KP al(x)
describe a field with eight independent components corresponding to spin 3/2.
The particles with spin 1/2 contained in y” are transformed away by the

subsidiary conditions.

e) Equation for spin 2-field.

A tensor of second rank ¢“V(x) has 16 components.A particle with
spin 2 must be described by a field with five independent components.

For an antisymmetric tensor it is not possible to describe a spin
2 field since it has six independent components and no single condition can
be imposed to it (the scalar formed with au av ¢uv would vanish identically
with ¢V antisymmetric).

Consider then a symmetric tensor
oMY = gV

and forbid the existence of any other independent symmetric tensor (except the
source if it is the case of interaction with other fields) as well as of any
vector or scalar formed with ¢“v. We then obtain the following equations :
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(o + m2) ¢uv =0 , ¢uv _ ¢vu

uv
8, ¢ =0 (1. 7)

uv_
9y ¢ =0

which reduce the number of independent components to five and these therefore
describe spin 2 particles.

f) Equation for spin 2 massless field

An alternative way of establishing these equations will be illustrated
for the case of a spin 2 massless field h"Y generated by a source TV where :

WV(x) = (), TV(x) = TW(x)

With the field h"Y we may construct the following tensors :
uv o, B VA V  HA | M WV af
o b5 9y 3Y R e a7 MY 5 oM 9V g o ;

u B

v aB . _uv An . UV af
9 B9 gh T 59793 3 W g ggh .

A aB

As for massless fields no terms in h"Y and ¢"h must occur in its equation
we must have :

oWV -a (g M hrea V) sb ¥ hrcgohs

HY af _ _ uv
+dg 3a36h = kT
where
h8

h = 998

is the trace of the field. By differentiation with respect to M we get

o3 WV (I-a)+ (d-a)a”a 2, h* + (b+c)ad’ h=

B

=-xa TV
Y



- 21 -

Conservation of the source tensor gives

3, TV =0

therefore the left-hand side of the above equation must vanish identically
which leads to

So the equation will be :
o b (3, " Wt v a ) sb ¥ h-b ey

+ g"V 3% 2g hoB o o THY
or
% o WMV - % (3A M pVA 4 3 3V h“k) + ¥ h-d"voh+

1 uv af _ _ Kk kv
+Eg aaaeh = -BT

Now we choose a field scale so that the coefficient of o h*Y be the unity
hence b =1 and :
o hHY - ( aA M hvk + aA 3V hux) + "3V h - guv oh +

(1. 8)
+ g™ o, h™ e TV

]
This equation is invariant under the gauge transformation

uv
L R L I N LRI L

If we then impose a gauge-fixing condition

au (hu\’ ~%guv h) - 0
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then the equation (1. 8) reduces to

D(huv _ _% gu\) h) = -k T

We then introduce a new field variable
UV _ v 1 uv h

which then leads to the equations

a] ¢uv = - T

(I. 8a)
w o
9, ¢ = 0

We shall see that the Einstein's equation for the gravitational field reduce
to an equation to the type (I. 8) in the weak-field approximation (Chapter V).

g) Pseudotensor fields and currents

There is an important instrument of the space-time tensor

machinery, namely the Levi-Civita totally antisymmetric tensor €aBYS thus
defined :

€aBys ° 0 for any two equal indices,
o123 = 1»

€aBYs changes sign under interchange of two consecutive indices. It allows us to
define dual or pseudotensor fields and currents which transform under space reflec-
tion with an opposite sign as compared to that of the associated tensors.

In view of the expression for the determinant of a Lorentz transformation:

J
Yx L n = (det #) ¢

a B
EQBYG L 8] 2 Y L u\)An
we define the following dual or pseudotensor fields, the transformation of which

under a Lorentz transformation gets (det &) as a factor :

I) Pseudoscalar field o(x), the dual of a totally antisymmetric 4th
rank tensor "VM(x) :
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O(x) = € @ (0)

@' (x') = (det £) o(x)

Thus ©(x) changes sign under improper transformations.
An example is the pseudoscalar

P(x) = i U(x) v> n(x)
constructed with two Dirac spinors ®(x), n(x) and their adjoints

B(x) = o7 (x) ¥%, A(x) = nt(x) ¥°

and the definition :

5 _ 4 u oV _ALon
Y = z! eu\)An Y Y Y Y

where y“ are the Dirac matrices given in c¢). The transformation properties
of the spinors :

br(x")
' (x")

(and similarly for n(x)) and

D(2) w(x)
3(x) 07 (e),

p~! YWD = 2“ ¢

show that P{x) is a pseudoscalar.

IT) Axial vector field ¢ (x), equivalent to a totally antisymmetric
3rd rank tensor ¢A"(x) by the re]at1onsh1p
$"X(x)

¢ (X) 3l EUVA“
so that :

o (x") ¥ = (det 2) ¢ (x)

An important example is the axial vector current constructed with two spinors
ll’(x), I"(X) H

AH(x) = B(x) ¥° ¥¥ n(x)
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I11) Dual tensor field ? (x , equivalent to an antisymmetric second
rank tensor FM(x) :

? (x)

such as the one associated to the Maxwell field tensor.

FAN
? Euvan (x)

An example is the pseudotensor current :
(x) = 3x) v° S n(x)
Besides the currents P(x), A”(x) and cHV(x), the proper tensor currents :

S(x) = ¥(x) n(x), scalar
W(x) = 3(x) ¥¥n(x), vector
sHV(x) = B(x) o*Y n(x), tensor

are the basic tools for the construction of interaction lagrangeans between spin

% particles among themselves and with given tensor fields.

I. 2 - NON-LINEAR FIELD EQUATIONS FOR A SINGLE SCALAR FIELD

The equations astablished in the preceding paragraph are the basis of
the simplest field theories.

The recent development of gauge theories has given rise to classical
non-linear field equations, which have been the subject of much investigation in

view of the fact that they admit of non-singular solutjons of finite total
energy which are non-dissipative.

It is well known in quantum mechanics that as time goes to infinity
a free wave packet spreads out indefinitely. Only for sufficiently small time

intervals is the spreading of the wave packet negligible and only then may the
latter represent a free particle.

In general, a solution of a classical field equation is called

dissipative if it gives rise to an energy density T (x t) which vanishes
after an infinitely long time :

. -
1im Too(x’ t) =

t » o

for all Xx.
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This notion of dissipation is a generalization of the following simple
physical process, in the words of Sidney Coleman : "A stone thrown into a
still body of water makes ripples that spread out and eventually die away. The
stone disturbs the water, gives it energy, but, even if we ignore friction,
this energy tends in the course of time to spread out over the water. If we
imagine the water to be infinite in extent, then, if we wait long enough, at no
point is the water appreciably different from its state before the stone was
cast. The disturbance dissipates”.

The non-singular solutions with finite energy of the linear free-
field equations have the property of being dissipative.

There exist, however, some non-linear classical field equations that
have non-singular non-dissipative solutions. The importance of these solutions
resides in the fact that the simplest of them are time-independent lumps
of energy which do not spread out with time. These solutions are frequently
called solitons in the literature. The lumps provide a description of extended
objects with a finite energy such as might be the classical limit of hadrons.
The non-linearity of the field equation implies a self-interaction which is
responsible for the concentration in space of these lumps of energy.

Let us examine the simplest non-linear field equations which are the
subject of interest to particle physics.

a) Scalar field equation with quartic self-interaction: in the preceding paragraph
I. 1, item a), the equation (I. 1) was obtained from the postulate that the

term in o¢ was not linearly independent from the field itself. This

equation may be generalized if we assume that oo and some arbitrary function
of ¢, F(v), (but not of its derivatives) are also not linearly independent :

oo +F (p) =0 (1. 9)
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F(p) may be either a polynomial or a series in . In the first case we write :
N

pe+ £ A o"=0 (1. 9a)
n>1

The particular case in which :

Ap=m, A, =0 for n>1
leads to the linear equation (I. 1).

An important equation is obtained when we take :

_ .2 _ _ A -
xl =y, Az = 0, A3 = ;T . An =0 for n>3

where A 1is a constant and ¢ is a real scalar function.
It is the equation of the so called wﬁ - theory

(o + uz) o+ %T @3 =0 (I. 9b)

which plays an important role in gauge theories (see Chapter VII). The name

@ - theories results from the occurence of a term with the 4th power of

¢® in the lagrangean which gives rise to equation (I. 9b). The non inclusion

of a term in % in this equation means that we impose a symmetry namely that
the equation be invariant under the transformation o + - @, an important requi-
rement in the study of spontaneous symmetry breakdown (Chapter VII).

b) The sine-Gordon equation : this equation is obtained from equation (I. 9)
by choosing the function F(y)

as a special power series, namely :

Flo) =5 sin (Bo) (1. 10)
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where a and B are positive constants :

o+ % sin (Bp) = 0 (I. 10a)

The field is a regarded as a function of t and of only one spacial dimen-
sion.

Expansion in powers of B ¢ gives :

ag?

Dpt+tay- 3
3

0+ ..

1}
o

(I. 10b)
the constants o and c:sz correspond to uz and - A in equation (I. 9b).

I. 3 - NON-LINEAR VECTOR FIELD EQUATIONS

a) The linear Maxwell equations and electromagnetic gauge invariance

Maxwell's equations for the free electromagnetic field are :
LV -
3, () = 0 (1. 11)

where F“v(x) is the field tensor, expressed as the curl of the potential
field A¥(x) :

FV(x) = 2% AM(x) - o AV(x) (I. 12)

These are the simplest linear equations for a vector field.

These equatijons are gauge-invariant, ie, they do not change if the
gradient of an arbitrary function A(x), 3" A(x), is added to the field A¥(x).
Therefore, A'™(x), a new field obtained from A*(x) by an equation of the type :

AM(x) = A¥(x) - 3" A(x) (1. 13)
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gives rise to the same field tensor :

FrHV _ v

The requirement of gauge invariance of the electromagnetic
theory (which will be discussed in Chapter II) imposes the tensor F"Y as

defined in equation (I. 12) as the only second rank gauge-invariant tensor
obtained by differentiation of the field Au(x).

In general, given a vector field ¢“(x) which describes a spin

1 field with mass m, it obeys, in the free-field case, the equations (I. 3).
These equations are equivalent to the following ones :

HV
A (1. 19)

where
uv
AN ¢¥ - ¥ ¢V (I. 14a)

In view of the mass term, which is proportional to the field ¢ the equation
(I. 18) is not gauge-invariant if ¢" undergoes the transformation (I. 13).
Maxwell's equations are therefore the only possible second order differential
equations in AY(x) which are gauge invariant. And a comparison of the equations
(I. 11) and (I. 14) shows that the electromagnetic field is massless.

However, the free field ¢ s divergence-less as a consequence of

the equation (I. 14) with m # 0, whereas the Lorentz condition Bu =0
has to be explicitly and independently assumed in the Maxwell case :

a A - 3% (o A% =0

in order to reduce it to the pair of equations (I. 4).
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b) Internal degrees of freedom. The Yang-Mills fields

The classical electromagnetic field equations are linear. Examples
of non-linear equations for vector fields are provided by the Yang-Mills gauge
fields. These are special fields which have a certain internal degree of free-
dom.

The simplest example of field is a real scalar field : it has zero
spin (scalar nature of field) and is electrically neutral (the field is a
real function in classical theory, a hermitian operator in quantum theory). It
has no internal degree of freedom*. If we consider two real functions ¢a(x),
a =1, 2, they are equivalent to the pair of complex functions :

1 . * 1 ;
P00 = (0100 5 000)s 67 (1) = — (4(x) - 4’2("))(1 5)

The fields 4, ¢*, that obey, 1ike ¢, the Klein-Gordon equation, give rise,
as we shall see in § I. 6, to an electromagnetic current. The corresponding
electric charge is a quantum number which is the first example of an internal
degree of freedom. The latter results from the fact that the theory with these
fields is assumed to be invariant under transformations of the phases of the
function ¢(x). Physically this means that the observables do not depend on the
phase of the field ; the physics constructed with ¢(x), ¢*(x) is the same

as the physics constructed with the fields ¢'(x), ¢*'(x) where :

8'(x) = e ¢(x),
. (1. 16)
¢'*(X) = e'1A ¢*(X)

A being and arbitrary real number. These are the so-called global phase trans-
formations,

The energy, the momentum and the angular momentum of a field have

—

*
However, lagrangeans with such a field such as the one in equ. (VII. 1) may

have a Symmetry (¢ + ~ ¢) which defines an internal degree of freedom for the
€orresponding system.
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eigenvalues which are related to the geometrical degrees of freedom of the field
(see § I. 5, 1), 2)). The momentum four-vector is the generator of space-time

translations, anqular momentum is that of Lorentz transformations. They are so
to say geometrical quantum numbers.

The electric charge of a field wa(x) is associated with the reality
character of the function which describes it and arises from the invariance
properties of its equations of motion (or lagrangean) under the one-parameter
group U(1) of phase transformations (I. 16) :

$(x) > u'%(x) = e y*(x) (1. 16a)

The field y*(x) is equivalently described by the pair of real (or self-charge

conjugate) functions ¢ua(x), a=1, 2 related to ¢*, ¢** by equations of
the type (I. 15).

There exist fields which have other types of internal degree of
freedom. The simplest example is given by an isospin doublet ®(x), that is,

a pair of complex functions ¥1(x)s wy(x) represented as a one-column, two

lines matrix :
P(x) = (\pl(x) > (1. 17)
Wz(x)

similar to the Pauli spinor for the spinning electron. We may think of i3 and
¥, as representing two possible states of a given particle such as the proton
and neutron considered as different charge states of the nucleon. In the 1imiting
case of equal mass for these two particles, experiment indicates that one must
have the same nuclear physics for the neutron and for the proton, if one makes
abstraction of the charge of the latter and of the corresponding electromagnetic
forces. Therefore, in this approximation, the physics in a laboratory which
describes the nucleon by ¥(x) as given in (I. 17) 4s the same as that in



- 31 -

another laboratory which describes the nucleon by P'(x) where :

v'(x) = U(@) (x) (I. 18)
U(&) being a general unitary unimodular matrix which mixes the components ¢1, 12
into the new components Vs v, of '(x). As U(@) must be a 2 x 2 matrix
which depends on three real parameters ap, ay, ag it will be expressed in terms

of the identity and the three Pauli spin matrices Ty (which form a basis in the
space of the 2 x 2 matrices :

1= (10 - (01 . (0 -i _ (10 .
(0 1) T (1 0) 1, (i O) . T (0 _1) (1. 18a)

For infinitesimal values of the three parameters ays ay, a3 We have :

» infinitésimal o (I. 18b)

N

For finite values of as U (@) will be :

v

U(E) sexp (fa-«X

). (1. 18c)

T
. k
If we fix the three parameters, knowledge of the three operators —=
determines the transformation corresponding to the values of the o 's. These
three operators are the generators of the group SU(2) (the identity is clearly
the generator of the group U(1l), (I. 16a)).

As will be seen in Chapter 1V, the generalization of the transformations
of the group SU(2) to the case when the parameters 1 depend on the point
of space-time,(the group of local SU(2) transformations) leads us to introduce,
if the theory is to be invariant under this local group, certain vector fields
which are traceless 2 x 2 matrices Lgffru(x), expressed in terms of Pauli
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matrices in the following way :

u
7 (x) =

nmM™Mw

M “k (I. 19)
A", (x) .
L e

The set of three vector fields thus defined, A“k(x), k=1, 2, 3,
constitutes the SU(2) Yang-Mills fields.

Similarly and more simply, the electromagnetic vector field is
defined in connection with the postulate of invariance of complex field
theories under the local group of transformations U(1), the parameter A in
(I. 16) being now space-time dependent as the function A(x) in (I. 13).

Another example of Yang-Mills vector fields is provided by vector

fields which are 3 x 3 matrices and which are expressed as a function of

the generators of the SU(3) group, %? :

2"(x) =
a

n ™o

A
. 2" (x) 2 (I. 20)

The group SU(3) of 3 x 3 unitary unimodular matrices transforms
the space of triplets :

wl(x)
w(x) = [ vs(x) (1. 20a)
V3(x)
into itself (see Chapter IV. 9). These triplets describe, for instance, quarks

which are assumed to exist, for each flavour, in three different colour states
with the same mass. It is assumed that the physics of quarks is invariant under



- 33 -

the colour SU(3) group, that is, it will be the same for y(x) and for
v'(x) such that

v (x) = U(w) w(x) (I. 21)

where now y(x) 1is the triplet (I. 20a) and U(w) depends on eight parameters
wy» @ =1, ...8 and has the form :

8 A
U(w) = T + ia f . w, 1? (I. 21a)
for infinitesimal wy»a=1,...8 and
iw Aa
V() = &2 2 (I. 21b)

for finite values of the parameters,

The colour Yang-Mills vector field (I. 20) appears in association with
the comstruction of a theory which is invariant under the group of local SU(3)

transformations, the parameters of which are functions of point in space-time,
wy = wa(x).

Ta A .
The generators, - for SU(2), & for SU(3), obey certain commuta-

tion rules which Characterise their respective algebra. The structure constants
of these groups, namely €apc  TOF Su(2) :

T T T
['f"z'z]="€abc-zg,a,b=1,z.3 (1. 22)
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and fkln for SU(3) group (as given in Chapter IV, § IV. 9)

Ak Az Xn
T T :iszn -2~;k:2=1...8 (I. 22a)

are tools to be used in the theories which admit one of these groups as a
symmetry.

c) Examples of non-linear field equations involving Yang-Mills fields

Let us consider a Yang-Mills field Aua(x) associated to a local
SU(n) group so that :

A%(x) =
a

n~Mm2

u = -
) A a(x) Tas N=n 1

isa nx n matrix. The N2 - 1 operators T, are the generators of this
group and obey the commutation rules :

[Ta’ Tb] =1 Cabc Te

where the constants Cabc are the structure constants of the group.

Clearly, in order to construct an antisymmetric tensor field Fuva(x)
which will be the generalization of Maxwell's tensor F'V, we dispose not

only of the curl of A“a(x) but also of another tensor constructed with the
help of the structure constants, namely, C

L abe AVp(x) AV (x). Therefore, we
may write in general :

PV (x) = @Y A (x) - M A’ (x) + g Cabe A'p(x) A” (x) (I. 23)

where g is a constant.
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Similarly, the generalization of Maxwell's free-field equation to
the Yang-Mills case will have to take into account that besides 3, Fuva(x)

there is another vector which can be constructed with A" 2 (%) FHv 4(x) and the
structure constants, namely Cibe A v, b(X) e (x) Therefore the Yang -Mills

field equations in the absence of externa] sources are of the form :

% Falx) + g Cabe Ay,b(X) FY(x) = (1. 23a)

These are non-linear equations for the field A" a(X). The non- -linear
terms express a self-interaction of this field with 1tse1f

As we shall see in Chapter IV and in Chapter V, § 1, the construction
of a field theory invariant under a local group of transformations with
generators T, requires the generalization of the differential operator into
orewhich is a matrix in the space in which the T, are defined. The generali-
zed differential operator, the so-called covariant der1vat1ve, has the form :

D = 1 I. 24
W9, IT+ig AaTa ( )

where 1 s the unity operator and the T,'s are the generators of the

symmetry group under consideration.

Depending on the choice of the representation space of the group
we shall haye appropriate matrix representations for these generators.

In the case of SU(2), the principal representation space is the

Space of two-component isospinors (I. 17) and the generators are one-half
the Pauli-matrices :

a” 7? for two-dimensional representation of SU(2)
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If the representation space of SU(2) has three dimensions, the

space of isovectors, the generators are the usual 3 x 3 angular momentum
matrices :

(1)) =-1ice

a b for three-dimensional representation of SU(2)
be abc

In the case of the SU(3) group, the principal representation space
is the space of complex three-dimensional vectors and the generators are the

- A
Geﬂ-Mannl0 33) matrices 1? :

A
Ta = 7? for the three-dimensional representation of SU(3).

Another example of non-linear equations is obtained if one considers
a complex scalar field ¢(x) with a quartic self-interaction and in interac-
tion with the electromagnetic field A (x) The equatijons must be invariant

under the electromagnetic gauge group of transformations namely under the
transformations

®(x) + o' (x) = e1®AX) gy
(1. 25)
Au(x) > A-u(x) = Au(x) - ap A(x)

where A(x) is the point-dependent parameter of the transformation. We see that
the gauge group for fields in interaction with the electromagnetic field intercon”
nects the phase transformations of the complex field mentioned in (I. 16a) (but
now with space-time dependent parameter A as given in (I. 25)) with the gauge
transformation of the electromagnetic field mentioned in (I. 13).

A comparison of the infinitesimal phase transformation

@' (x) = (I +1ie Ax)) o(x) (1. 26)
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in (I. 25) with similar transformations for isospinors as given in (I. 18b)
with @ dependent on space-time points, shows that the generator of the
electromagnetic gauge group is the identity.

Therefore, the electromagnetic-gauge generalized differential operator
obtain from (I. 24) is :

= i (1. 27)
D=3, +1ie A, (x)

The equation for the field ¢ with quartic self-interaction ?nd 1?te:-
acting with A (x) is obtained from equation (I. 9b) by replacing the invarian
differential operator o by the gauge-invariant differential operator

D=a°‘

2, » 0 0° (I. 28)
where D, is given in (I. 27)

We may therefore write the equation

(0, 0%+ u2) 6 +n(o o) ¢ =0 (1. 29)

as corresponding to equation (I. 9b) for a real scalar field . The constant n
corresponds to the coupling constant A in (9b).

The associated Maxwell equations for the electromagnetic field in
i"te”?Ction with the scalar field ¢ are of the form :

3, F™(x) = ejH(x) (I. 30)

where

*
M=o Mo -oed¥e) )

is the gauge-invariant current.
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Other examples of non linear equations, such as those for 't Hoft's

monopole and for the instanton, are more easily established starting from their
lagrangians.

1. 4 - FIELD EQUATIONS AND ACTION PRINCIPLE

As is well known, the field equations are assumed to be derived from
an action principle. A relativistically invariant function L of the field
variables ¢%(x) and its first derivatives " yv*(x) is assumed -possibly

also an explicit function of the coordinates- out of which a functional is
constructed, the action S :

S = I L %(x), ¥ o¥(x)) d*x (1. 31
the integration being taken over the whole snace. The action principle postu-

lates that the variation of S vanishes when one varies the fields wa(gl
in such a way that & ¢®(x) vanishes at infinity

§S=0 for 6uy*x) =0 at infinity (1.32)

The variation of the field y%(x) means that we consider a family of
fields ¢*(x ; A) characterised by a parameter A and then :

s ]
- [34] o
A=0

We have :

4 4 9L o a L uo,Q 2
§S=|6Ldx=1]4d 2 —2 -—— §(3" v")
[ X I X 3 . vo(x) + Yo Fo0) \
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=Id4x§ 3L - M _EL__26¢°(x)+
{3 4%(x) 33" ¥(x))
4 u d L a

+ I d'x 9 a(au wa) )

Now

Id“xa”(LL__aq,“): Iaqfx _BL 4o"=0
a(a” v*) a(a™ o)

outer

surface

n
o

because [6 w“]
outer surface

So for & y® otherwise arbitrary, the postulate (I. 32) implies the field equations :

3L _gualL -0 (1. 33)
3 p¥(x) ad* v*(x))

I. 5- EXAMPLES OF LAGRANGEANS

a) Scalar complex field «(x), w*(x) with mass m :

L = 3" @* Bu ® - m2 oo (1. 34)
AL _gr AL o (gand) ex) =0 (1. 35)
3 ot 3" o*)

b) Vector complex field «"(x), ¢"*(x) with mass m :

= 1 * w _ 1 * Vo oap Yy oL oav g o gH VR +
L-3 G @™ -3 G, @) -z * G

+ ml w*u s (1. 36)
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JRPN. 3 L uv
St 0. Png g,
a
uv 9(3 uv)
(1. 37)
aL a 3L
—_— -2 ——— =0= 3 uv 2 Ho_
aw*u 3(3aw*u) \,g +m-@ =0

These are the Proca equations for the vector field. These equations
are equivalent to the following ones :

(n+m2)(ou=0

. (1. 38)
auw =0

There are thus only three independent components of «"(x) as required
if this field is to describe a spin 1 field.

c) Spinor field y(x), W(x) with mass m where :
B(x) = v (x) ¥°
or

B () = % () (Y0)

the matrices y¥ are such that :

1
2OMYY 4 YY) = gt

L=9(x) (i y* 3, -m) y(x), (1. 39)
9L a 3L
—_— - 2 - 0= (i~® - = 0
> 3(x) 50 30 (1 ¥y~ 3, - m) w(x) (1. 40)

Lagrangeans which differ by the divergence of a four-vector which
vanishes at infinity are equivalent since they give the same action.
Then the following Dirac's lagrangean is equivalent to the above one

L= By 3,0 - (3, Y ¥) -mip (1. 81)
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d) Scalar field with quartic self-interaction

The equation for a real scalar field ¢ with a polynomial interaction
(containing no derivatives of ) such as equation (I. 9) is deduced from a
lagrangean :

L=%a“wauw-U(w) (1. 42)

One obtains

D(p+F(q))=0
where

Flo) = U'(0)
For the case of a quartic self-interaction we have :

Vo) = 3 uf o + X (1. 42a)
a1

and equation (I. 9b) for .
Of particular interest is the case where the term in u2 is negative.
As will be studied in Chapter VII § 1, the potential energy U(y) (that is,

that part of -L o of the hamiltonian which js different from zero for a
constant field) will have two minima for :

2 2
o =-8 2,0, We<o (1. 42b)

The existence of more than one minimum for the function U(p) or of
more than one zero for the function

2
322—9;_>0’u2<0
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in the equivalent lagrangian
=1 v -
Ll"'f 9 wau&o Ul((p)'\oL (1. 42d)

is important in that it makes possible the existence of non-trivial time-inde-
pendent solutions of the equation (I. 9b) with finite energy, for the case in
which the function ®(y, t) depends on t and only one spatial dimension y.

e) The sine-Gordon equation

This is derived from the lagrangean (I. 42) by assuming :

U(o) =-§z(cos Bo - 1)

If we want to compare the constants a :nd B with those of (I. 42),

(I. 42a) we may introduce m2 and n such that :
g :.m_4- S—ﬁ
2 T ° m

8

so that the sine-Gordon lagrangean is :
L_l(a 1] m4 /l:l‘
=% M“’)(a ) 5 [cos (F(p) -1
and @ = ©(y, t) depends on only one spatial dimension.

f) Yang-Mills field

The lagrangean for a Yang-Mills vector field A”a(x) in the absence
of sources from other fields, which will lead to equation (I. 23a), has the

form :
52‘ 1
s - 7 Fwa Fu\),a (I' 43)

uwo : .
where F a 1s the tensor field given by equation (I. 23)
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It will be seen in Chapter IV that this tensor is generated by the
algebra of the covariant derivatives (such as given in equation (IV. 16)).

We give nere, as two additional examples, the lagrangean for

g) Scalar field in interaction with the electromagnetic field, as defined
by equations (I. 27), (I. 29), (I. 30), (I. 30a), namely :

* * *
L= PV OF o+ (090) (00) - 30%70 + 3 (67)?

(1. 44)

and h) the lagrangean of the 't Hooft-Polyakov monopole, described by a Yang-Milis

vector field A“a(x) and a set of scalar fields ¢a(x) where the index a = 1,2,3

means that these fields are isovectors under the group of three-dimensional rota-
tions SO0(3) as an internal degree of freedom. It is :

2
= -1 1 H .n .m
L=-7 Fa Fua*t73 (D, 9,) (07¢) -3 (8¢, -7)

2

(I. 45)

where

Fiva = 3, Aa =3 Ajp teege Ap A

Du ¢a = au ¢a te €abc Aub ¢c

This gives rise to the equations
Ny u =
D, F'a * @ eapc 0p D" 6 = 0
pH n’
D by + 2oy (00,5 )=0

Note that the term in m2 (m2 > 0) corresponds to the case u2 <0 in
(1. 42a), (1. 42b), (I. 42c).
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1. 6 - NOETHER'S CONSERVED TENSORS

The lagrangean formalism of classical field theory allows the construc-

tion of physical quantities which are conserved, of observables which do not
change in time.

Noether's theorem states that if an action is invariant under a
continuous group of transformations of the fields the corresponding lagrangean
determines a conserved tensor and an associated time-independent observable.

If the field transformation law corresponds to a geometrical trans-
formation of the space-time coordinates, the Noether conserved objects are
a) the energy-momentum tensor density, which is divergenceless, and the
associated time-independent energy-momentum vector ; b) the divergenceless
angular-momentum tensor density and the time-independent total angular momentum.

Other conserved objects, such as currents and charges (electric or
baryonic or isospin, etc) result from invariance of the lagrangean density

under continuous groups of transformation of the fields, corresponding to
internal degrees of freedom.

In general we assume the action :
S = [ L (0(x), 3" ¢*(x) 3 x) d*x
the lagrangean may depend explicitly on the coordinates x.

s o s . . . a
Suppose an infinitesimal coordinate transformation(an element of
continuous transformation group)is carried out

R . (1. 46)
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k .
and is defined by the parameters 6§ w , so that :
k . 47
§x" = ) (x) 6w (1. 47)
This transformation induces a transformation of the field variables

- .48
VHx) > %(xt) = ¥ (x) + 8 ¥¥(x) (1. 48)
where we shall set :

§4%(x) = F® (x) 6 u¥ (1. 49)

i 1 i ia-
We see that the transformation law for the fields involve their total var
tion

8 U%(x) = ¢ %(x') - p¥(x)
. a .,
whereas in (1.9) we used the variation in form only of the field, § ¥ :

S u¥(x) =y %x) - ¥¥(x) (. 50)

i.e relative to the same point x.

We rhave the following identity :

8 u(x) = ' &(x') - p*Ax) + ' %(x) - ¥H(x)

or

I. 51)
6w“=<su,+(auq,)ax“ (
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This is seen more clearly if we make use of the parameters & wk
$'%(x') with ¥&(x' ; 6 w°) and y¥(x) with v*(x ; 0). Then :

= _ae* . ko, o3 y® u
3 v (x) = e 8 x
3 w ax”

and identify

since the variation 3 refers to a differential of ¢%(x) with respect to

the parameters & W€ and these appear explicitly in ¢'%(x")
and implicitly through x'.

We then see that the variation of the action will be :

&S J sLd% + J L s(d%x) + f ( 3L 5 xMydx
3 xM

or

55=J[3La6wa+ 3 L a(auwa)] d4x+
d Y a(a¥ v*)

* ! AL sy d4x + [ LS (dax)
3 xM

Indeed we have, assuming that as x + + =

t o, »> *+ o

§

xl
I L™ (x'), 3" v Ex') ;3 x') dxe - [ L(p*(x), 3 p¥(x) 3

= y¥(x' 5 8 )

x) d4x

4

L(w'®(x'), 3% o' %(x"), x') d*' - f L(w*(x'), a¥ v*(x'), x') d'x' +

s Ld% + I L*(x'), 3% ¢*(x*), x')(1 + 3A(6xk)) dx -

S =

+ J L™ (x'), o ¢*(x'), x') dhxe - J L(e*(x), a¥ ¢¥(x) 3 x) d*x
- |
J

) I L(*(x), 3% ¥*(x), x) d*x

where we made use of the relationship :

d%x l ax! ‘ d*x = (1 +3,(6x")) dx
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Thus in first order in & wk :

4 3 L x4 A, 4
§S = I SLd'x + [ 8x” d'x + J L 3,(3x™) d'x
" A
therefore
L a 3L uoa, , aL A
§S = I( — S+ —— §(3" ) + Sx” o+
3 o° 3(" %) ax*
A 4 I. 52
+ L3 (8x")) dx (I. 52)

or since by the equations of motion :

aL _ . 3L

3 a(a¥ ¢
we get

6§S = I 3 ’ -ELJ;—TE‘ sy + L st g d*x

(3, ¥v)
- I 3 b _aL [ 5 9* - (3 v%) &x¥ ] + L&t $ a4
( 3(a, v*) v

As

Gxu =

(%) 6 ¥

Qa
§ ¢ = Fak(x) § wk
We may write

§S = f N 3 5%5i e ['F“k - (3, %) Y ] +

+ LA f & wk d%

Invariance of the action under the transformations we have considered means
that

§S=0
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and hence, for arbitrary infinitesimal § wk:
Ao 53
/y N =0 (1. 53)
where
o= 2L ) 5 %) Y, - - (1. 54)
k a v k k k
a(3, v*)

is the Noether conserved generalised current. The conserved Noether generalised
charge is :
dN
No= [ N0 a3, —K =0 (1. 55)
k k [5)
dx

I. 7 - EXAMPLES OF NOETHER TENSORS

1) Field energy-momentum tensor and energy-momentum vector

Suppose the transformation is space-time translation :

i H u

X =X +a

then :
wla(xl) = w(l(x)

this is seen by the fact that if for one variable one sets f'(x') = f(x) then

, a
f'(x + a) = f(x) and we see that f'(x + a) = e OX f(x + a) = f(x), so that

f‘(x) = e-iap f(x) = f(x - a), p = -4 %7
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Therefore, in the relations :

N U T fuk s wk’
) o‘(x') = ‘p“(x) + Fuk(x) 6mk

one sets :

Therefore Noether's conserved current is the energy-momentum tensor and corresponds

to the postulated invariance of the theory under space-time translations :

B . L
e ey L R (1. 56)
23, )

The energy-mormentum vector is :
pa f 790 43, (I.57)
and satisfies the equation :

94 px.p

dx°

2) Field angular momentum tensor

Assume the coordinate transformation group to be the infinitesimal
Lorentz propre orthochrone group :

x'H = Xu + EUV XV’

\V}
Cu = - €vu

GFT - E
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Compare with :

oyl 08 o fu[

=Xt E ? aB o

since the parameters & «X are now ¢°%, then we have :

M M _
f of (s a 98v § B gav)x

[ﬁso that :

ne
fuaB EGB = eag(éua gB\) - &"8 ga\))xv = (EuB 9a.,” cBll gB\))x\)= Ze x\’]

Bv

Let us write for the corresponding field transformation

VXY = 9T (0) + 3 P (k)
and set :

Fo o) = D% wP(x)
so that

v = )+ g 0 ¥ e
where

DaB;uv = - Pgsu

The above form for ¢'®(x') is an imitation of the corresponding
form for x*M.

Then the Noether generalised current is the angular momentum
density :

A A A 3L o B (1. 58)
M =-N =x T -x T + 22— D,. VY
un m - “uwn now 3(2, ) Bsun
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which is conserved

3L (] wB =0 (1. 59)
Let us introduce a tensor Fyun Such that :
o2l o® ¢B (1. 60)
Fam = Fanu ® a(at %)  Bsum
then clearly the tensor
N (I. 61)
= F
eun Tun te Aun
is symmetric
(1. 62)
wn = Oy
we impose further that :
. (I. 63)
an = " Flan
so that
A
3 Q F)“m 0
and hence : a)
(1. 6
W -
? eun =0
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From equation (I. 60) we get :

9L a B
F.,-F = —— D an Y
uAn  uni a(a” wa) B3An
3 L o B
F .- F =z ——— D7, ')
SUA
nuA  nAu a(an wa) Bsu

whence we deduce, thanks to equality (I. 63 )

1 9L (V] B 3 L (63 B _
Fooo= AL pr  yBL AL g
)\T]U .2- a(a)\ wu) B,ﬂu a(an wu) B’UA

9 L 0%

8 . 65)
oLt R (1
a(a¥ ¢ BN

as a result of equations (I.61) and (I. 63) the energy momentum vector may
be calculated from either T8 or %8 :

. 66
pB=Jd3x T°B=Jd3x 008 (1. 66)

Now if we replace Tun as given by equation (I. 61) into the angular momen tum
density Mkun (I.58) we get :

= - 3 L o B .
M)qm =X, eln xn eku + a(ax lDC!) D Bsun v
a - a I. 67)
+x, 9 Falu X, 3 Foan (
that is, in view of equation (I. 60 ):
M =x © ) o (1. 68)
an T Oan T X0 Oyt T (Fn Xy~ Faan %9)

So the angular-momentum tensor as defined by :

= | 43 1. 69
oy I x Mo ( )
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is equal to :

3
d = I d x (xu 65y " X eou) (1. 70)

note that the skew-symmetry of F as given in (I. 63 ) imposes a = 1,2,3 for
A=0in (I.61).

3) Current-vectors for internal degrees of freedom

Assume now that the geometrical coordinates are kept unchanged :

L
M =0

and that the fields undergo a continuous transformation corresponding to an
internal degree of freedom.

That is the case of a change of the phase of the complex field *(x)
by a constant factor :

W(x) » 0'%(x) = ' y%(x) (I. 71)
or, for infinitesimal w

PrE(x) = (1 + iw) ¥*(x) (1. 72)

This is the global gauge group with one parameter, U(1). Then the Noether's
current is the current vector :

Mx) = - 2l ()
3(3u v)
and as § w s here denoted w :
F¥(x) = i *(x)
thus :
Mx) = -0 2Ly

33, v%)
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If we want that j"(x) be hermitian we write :

P =i e 25 - 2L Ll (1 73)
{ 33, wTH(x))  3(3, v o(x) }

The charge is given by :

Q= [jo-x) d3x

and is conserved in time :
AV . do _
3, J 0 ; 3% 0

Examples of Noether currents correponding to invariance of the theory under
the internal SU(2) and SU(3) groups respectively will be exhibited in
Chapter 1IV.

I. 8 - CONSERVED NOETHER TENSORS FOR SPECIFIC FIELDS

1) Scalar complex field

The lagrangean is :
L= (), 0 -n" o o

Invariance under space-time translation defines the energy momentum tensor :

8- 2L (3Bp) 4 hc. - L ™ -
3(8(1 )

(3* o*) (aPp) + (280*)(2%) - (1. 74)

u

g*® [(B“w+)(auw) - n? o w]
which is symmetric in a, B. The energy momentum vector is

pe - I %0 g3y (1. 75)
from which we get the hamiltonian

H=p0-= J dx {wiw + (Vo " T o) +nl ot } (1. 76)
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with :

The linear momentum is :

pk - - f a3x { w3, @+ (30" = } (1..77)

Invariance under the Lorentz group determines the angular momentum which is
purely orbital:

=
n
x
—_f
|
x
|
—

T = by (1. 78)

SO that :

Lo = I a3x (x¢ Tog = %g Tok)= I d3x { [xk (a¢p+) - xz(awo+)] T+
vt [ x - G |} 79)

the current will be :

P00 =i { et e - (3" 0" o) (1. 80)
and the charge

0= [ @ %0 = [ i {o 0 () 0} (1. 81)

2) Complex vector field

Lagrangean :

Wt +
L=3G " G, -G ,0,-0,0) -

1y oud o vt 2 ut
(3¢ 3w ) Efi“,+ L
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The energy - momentum tensor is

TGIB = -9-—"—38%+h.c. -Lgo‘e =
3(3, )
apt ay
& anu+anu+g L gef (1. 82)

It is not symmetric ; the symmetric tensor 0"’8 will be according to
equations (I.61) and (I.62)

Oun = Tuin * 2 Fain (1. 83)
where
_ 1 + o a 8
Fun 7{ gz\a (8%, 9 = 8 9p) @+
+ +
a a a _ RO B} +
gua (¢ n e "8y gnB) ® gna (67 9B 6 ] gAB) ©
1 + + }
+ h.c. = 7 ?ku mn dux @, + h.c.
S0 N
F = + . 84
Aun glu on ¥ “n g)\u (1 )
Therefore
Y _ A + + A
3" Fyun =(3 gku) o + g)‘u 3% @ + h.c.
but
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S0
+
A _ 2, + + A A+
aFXun—m(wuwn+wnwu)+gkua gt o 0 E?Au
thus
+
N a o+
= ¢ - +
Oun Lot anw+anm ?m Lgun
+ "
2, + + A A
+ +
+m(gpu(pn+wnwu)+g)‘u3 o 9 0, A
or
+
a a a
—- - + -
Gun gw(anw awn)+gmam h.c
2 a a
- - +
Lg, + (e, o, + o' @)+ & (%0 -3 )

+
S
+
Q)
GQ
+
=
(2]
n
o+
h
+
9
+
]

auyg n jiled n n ua
+ + a
- Lan, mz(w wn+wnwu)+guugan+gmgn
o+ - o+
+ &7 ?ﬁuﬂf . ffw

So the symmetric energy-momentum tensor is :

+ a o+
ounSgUa gn+g n g‘la+m2(¢+v (pn+(p+nwu)+

af+
+ 9un(% & %B - m? o ®,) (1. 85)
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where we have taken into account the equations (I. 37).

We know that it is indifferent to calculate the energy-momentum vector
from 128 or from 9‘18, according to equation (1, 66) -

We have for the hamiltonian density :

ou+ ou
00 _ 0 o+ - (1. 86)
TV = 55? 3 wh + 3 qnl 55? L
Define
= __.aL = - - = 1-87)
T = 3(2° &) (3 @y = 3, ©) gou (
whence
_ _ (1. 88)
o =0 5 T Eg?lk
From the equation for m, we get :
o _ o _ (1. 89)
VG = - m
or
0 d=-F -7 (I. 90)
From the field equations :
uv
av? snl o =0
we deduce for wo :
q9 - - Ji ak (ak(9° - 0 wk)
m

therefore,from (1. 89) we are able to express ¢° in terms of 7 :

© === (V. 7) (1. 91)
m
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So from (I. 389) we get :

k=L s (@ -k
m

ok .
We now proceed to replace «° and g in equation (I.86 ) by expressions
(I.91) and (I. 88) respectively, which gives :

IR A A AR AR I (A L (A
" m (1. 92)

+(Fxoh) - ('V'x$)+m2§5+'€5

S0 that, after a partial integration we obtain the hamiltonian :

”H[da’”oo:f&x{ %+.'ﬁ+;12(3-?*)(3-¥)+(3x$“)-<¢x$ ) +

AR } (1. 93)
The linear momentum is :
Pk = f d3x TOk

with o

oL+
TOk = g ak (p

kK o+
N
that is, according to (I. 88)

A R N AN RN T MR R (1. 94)
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The angular momentum tensor density is, according to equation (I. 58):

M L + S

Aun Aun

Aun

where
L

|
x
—
]
b

Aun ~ Tp An

+
- u - u t
Slun = SE?Aa (" o ) n pu) + h.c.

Thus the spin vector is :
g:fdax{[;+x$]+[$+x?:]} (1. 95)

3) Spinor field
L=v}{$(y-aw)-(a¢ov)w}-m Vv
Energy-momentum tensor :

U (R R ¥ ou - (1. %)

s - - - af
-{v}[w(v-a)w -(aww)w] -m W}g
The symmetrical tensor turns out to be :
-1 B8 Ba
eaB--z-(T" + T

Hamiltonian :

H = I a3y 100 - I ax gt { A (-iV)y+m B } ¥ (1. 97)
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where :
a=y° ¥
B =v°
Linear momentum :
i 1. 98)
pk - f a3x ot (- 3) ¥ (

The angulai momentum density is, according to equation (I.58 )

MA

un - % {xu [ by v - (9 Dy ] -
-x [0 0, 0 -, B v e}

WY o v+ o Y V) (I. 99)

1
' un un

i itian conju-
Where to the last term of equation (I.58) we have added its hermit
gate.

Therefore the angular momentum tensor is :

I. 100)
= 3, M0 . (
dun = f d x M un Lun + Sun

with .

]

Lun ’izfd3’<{xu[w+anw-(anw+) ) ]-

- x vt o, v- v e ] Y

1 | (vt *y° v°w}
Sin = 7 Idx{u’ O ¥V Y o
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Thus the ordinary angular momentum has the form (after a partial
integration in Lkz) :

kg T tke * Sk (1. 101)
Lk£=[d3x { v 0 - (- % 0) )
Ske, = I x " G o v
The current of the spinor field will be, according to (I1.73) :
M(x) = B(x) ¥¥ w(x) (1. 102)
whence the charge
0= [ 3000 &= [ vt 0 e (1. 103)

These will refer to electric charge or the other conserved quantum numbers such
as baryon number, lepton number, etc.

I. 9 - SOLITON SOLUTIONS OF CLASSICAL NON-LINEAR FIELD EQUATIONS AND TOPOLOGICAL
QUANTUM NUMBERS

As stated in (I. 2), there exist solutions of classical non-linear
field equations which behave 1ike stable lumps of finite energy which propagate
without diffusion. The most important examples of these solutions are the
so-called topological solitons. They may exist only for fields which have an
internal degree of freedom. It is convenient to study the case of fields
defined on a Minkowski space with D spacial dimensions and one time dimension :

X2 (xk)2

1

= ()% -

nm~Mo
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A theorem called Derrick's theorem, states that there exist no time-
independent non-sinqular solutions for a scalar field theory described by the

lagrangean

L1, 06 0 - U (o)

where U (v) > 0 and U(“b) = 0 for the vacuum states, except for D = 1.
The theorem applies to several such scalar fields.

Research has therefore been carried out for different types of non-
}inear equations and for different possible or convenient values of D. For
the simplest example of the soliton solution, that of the scalar field with
the lagrangean (I. 42), D = 1, the solution is called the kink. Other examples
are the vortex solution for fields defined in a Minkowski space with D = 2,
these fields being those in the lagrangean (I. 44) with uz < 0 ; the
monopole or hedgehog solution discovered by 't Hoft and Polyakov, corresponds
to the lagrangean (I. 45) ; the instanton is a solution to the equations derived
from lagrangean (I. 43), for pure gauge fields, but for an imaginary time
coordinate.

The internal degree of freedom of the field gives rise to an
internal field space. It turns out that the solutions -the manifold of the
internal field space- can define a non-trivial mapping onto the manifold of
the spatial D-dimensional space ; a trivial mapping is a correspondence that
maps all points of one manifold into one single point of the other. Now
each mapping is characterized by an integral number which defines the so-called
topological charge. The vacuum states have vanishing topological charge ; a field
defined by a solution with non-vanishing topological number is stable, cannot
decay into the vacuum. As we shall see in some specific examples, the topolo-
gical charges are absolutely conserved.
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Topological quantum numbers are therefore concepts associated to the.
topological structure of the lump solutions and have nothing to do with Noether's
theorem. The study of the maps between the internal field space manifold and
the manifold of the spacial 0 dimensional space of the theory, is part of a
branch in mathematics called theory of homotopies.

Two continuous mappings f(x), g(x), each from a manifold Mx Tnto
a manifold M are said to be homotopic if there exists a family of continuous

maps H(x, t) depending on a parameter t defined in the interval (0, 1)
such that

H(x, 0) = f(x), H(x, 1) = g(x) (1. 108)
The set of maps H(x, t) for the different values of t are so to say th?
possible configurations of the function f(x) [or g(x)] in the act of belngH .
continuously deformed into g(x) [or f(x)]. If f is homotopic to g by
H: f~~g and if g is homotopic to k by L : L : g~k

1
H(x, 2t), 0 < t <
then the map SE?(x,t) = 1 Z
L (x, 2t - 1), stz

1

will make f homotopic to k : 55?: f~ k ; homotopy is thus an equivalance

relation. Homotopically equivalent maps form a class {f}. The set of homotopy
classes forms a group. An example is provided by maps from the closed line
interval (0, 1) with the extremal points 0 and 1
enclidean plane without the origin, a given point Y, in the plane being
associated to the point 0 or 1 of the interval, f(0) = f(1) = Yo+ The
maps frem (0, 1) (or a circle §! with a point X, on its circumference

identified, into an
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identified with the point (0 ,1) into the above plane may be represented by
closed curves starting and ending at Yo- The loops which avoid the origin
myy be deformed to the point Yo 3 therefore the set of all such loops forms
the identity class {e}. The loops that enclose the origin once in a certain
sense, for instance clock wise,form a class designated by {1} ; the class {n}
is the set of loops which enclose the origin n times in correspondence to
the interval (0, 1). The number n 1is called the winding number and is an
exanple of a topogical number (negative numbers correspond to the loops which
enclose the origin in an opposite sense).

Other examples will be found by the reader in the literature which
he is invited to study.

Before giving some examples here we shall show Derrick's theorem.
If ©,(x) is a soliton solution of the lagrangean (I. 42) its energy will be
given by the hamiltonian :

H = % ! dP (v wS(X))2 + J dPx U(og(x) = Hy + Hy

If we change x into a x, H will be expressed as

H(a) = a=(D - 2) Hy+a” DH2

As the solution energy must be stable under arbitrary variations of the field
we have, ip Correspondence to the above scale change :

S H _
S a =0
a =1
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or :
(D-2)H; +DH, =0
which is only possible for D = 1 since Hy > o0, H, > 0

Let us therefore consider

a) The kink solution and the kink quantum number .

The kink lagrangean is :

2
L1 (3,02 - (3, @2+ B @? - o

where © = ¢(x,, x) since the number of space dimensions is restricted to one
by Derrick's theorem.

4
If we add a constant term to L, namely, - 7;%; we may write :
2 2
1
Lo a0 -3 -0

sum over u = 0, 1. The field equations are, from the lagragean 0527 :

(3,2 - 32 -n?) 42 =0

(note the sign of the term in mz).
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A time-independent solution of this equation is such that :
(Dll+m2(.p'x(p3=0

The minimal energy solutions are :

m

0, =+ = ;
vacuum Iy (I. 105)

which define the two classical vacuum states . The kink solutions are :

Pkink (x) =+ ™ tanh ™ (1. 106)
anti-kink 2N

the + sign corresponds to the kink, the - sign to the anti-kink. The energy of
the kink is

22
o) = | dx%%(ao 0%+ (o, 0% +3 (& -5 {

H B
kink = 3 X
The Fig. I. 1 gives the form of the solutions. The kink tends to

» @ value of one of the vacuum states, when x - + =, while it tends

> =

to - M
i corresponding to the other vacuum state as x » - «.
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Ao Ao
~————— L (vacuum)
ey T
S~ /
>~ kink
N - > >
° ~ antikink X 0(o)
S~ m
————————— [ ———— === 'ﬁﬁmwm)
Figure I. 1

The energy density is represented in Fig. I. 2

A Hig)

Figure 1. 2



- 69 -

and the energy is seen to be concentrated around the origin. What is the
internal degree of freedomhere ? It is given by the invariance of the
lagrangean under the reflection ¢ - - 4.

The homotopic mapping in this case is the correspondence between the

m
3 = i ig. I. Thus —
two vacuum states + -0 and the points x = + » as seen in Fig JX

1 = - i-kink.
corresponds to x = » for the kink solution and to x = - » for the anti-kin

There exists then a topological number which,if it is equal to 1
for the kink it will be -1 for the anti-kink and zero for the vacuum states.
We may define it as :

AT do _ /X 1 ©) - of - (I. 107)
k'F?Lmdxﬁ'T?[“) o -= |
which is the charge
. 107a
k = Iko(x) dx (1 )

of the current

kytx) = X1 €, 2" o(x) (I. 107b)
where .
€01 €p=1
€0= €70

For the kink .

k=1,
for the antij-kqjnk

k=-1
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and for the vacuum states :

k=0
The topological current ku is conserved
3, k=0 (1. 107c)

and so the topological number k 1is absolutely conserved - a kink cannot
decay into a vacuum.

b) The vortex solutions and the winding number

The second example of topological number is the winding number asso-
ciated to the vortex snlutions of the equations for the complex scalar field
$#(x) in interaction with an electromagnetic field defined by the lagrangean
(where the number of spatial dimensions is two) :

2 2
* 1. 108
L dr P 0, 00 6 -] 6% - ) (1. 168)
with :

Fuv = au Au - au Av

(1. 108a)
Du¢= (8u+ ie Au) ¢

The field equations are :
3, Y o=e j*

2
\T R * o.m .
Du D 4)' n (cb ¢ _n) ¢ )
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* *
PeieT 0 e 00 e)) =i (0T e - e eT)-2e A g%

These equations are gauge invariant under the U(1) group of phase transformations.

The name vortex solution comes from the theory of superconductors.
The Meissner effect is the fact that if an external magnetic field has strenth
smaller than a certain critical value Ho’ then the field cannot penetrate
inside the superconductor 3 if H > H, the field can go through a kind of
hole through a superconductor of type Il and there is a magnetic flux across the super-
conductor. These are called vortices of magnetic Flux which is quantized.

The above equations, as shown by Nielsen and Olesen, admit of
vortex solutions. The magnetic flux quantum number is the winding number
which characterises a mapping between the set of vacuum states and the two-
dimensional geometrical plane. To see this, consider a magnetic field B in
the z-direction and a circle C around the origin in the plane (x, y) over
the circunference of which, C', the current is zero. From the equations for
the magnetic field above we deduce the value of the vector potential A as a
function of the current J, that is

ei=ei(¢Fo -0 T¢)-2elhoo
gives :

R d (486" 6" 90
2e %

at pointg where J = o (such as the circunference C'). If we set

o=f(r) el X(O)  2.,2,,2 tanp =Y
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then the magnetic flux is, through the circle C (r fixed)

flux

it

f B dx dy = § . dx = % % dx - ¥y
c c' c'

that is :

flux % [X(Zﬂ) - x(o0) ] = 2: D on=0,%1,+2, ... (1. 108b)
The fact that the field ¢(x) must be single-valued imposes the quantization
of the flux. Thus the number n arises from the map of the circle in the

X, y plane on the circle described by the phase .

The field energy (per unit length) :

* * 22
H = J dx dy % % " (Bo) - (Do) + % (6 ¢ - %T)

will be finte if ¢ tends to its vacuum value ¢ - X ™ ot infinity and
/n

and B»>0.1f B->0 asymptotically, R will tend to a purely

gauge form A+ %V o :

i0 o] >0

We see that the asymptotic solutions are characterized by a mapping between the
circle at infinity on the (x, y) plane and the phase of x(p) of the

vacuum states of the field ¢. When one describes a circle in the (X, ¥)

plane the phase x(8) can change from 0 to 2mwn. The number n is the
winding number characteristic of each homotopy class in this map.

It is to be noted that the electric charge e in equations (I. 108a)
and (I. 108b) is the field coupling constant, which we may designate by e
It is related to the particle electric charge ep by the relation e = 7 ep

(see remark at the end of Chapter II). Thus Planck's constant is implied in the
quantisation of the flux (I. 108b)(see Coleman24)).
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c) The 't Hooft-Polyakov monopole

Consider the lagrangean :

- 22
J§f7_ 21 euv 1 W _n _m

=752 Flat 2 (Du¢a)(D %) -7 (¢, 9, 7T)
of an isovector ¢ in interaction with an isovector gauge field Aa“, the
internal symmetry group being the SO0(3) group, where :

F = -
uva av Aua 3p Ava * € €ape Aub Avc

D =
" ¢a au ¢a + e €abc Auc ¢b

The classical field equations are :

uv T
Dv F a~ " ®Epe % D 28
(1. 109)
2

H _ m
DuD ¢a-"n¢a(¢b¢b"'ﬁ_)

4 A solution, corresponding to a magnetic monopole was found by 't Hooft
and Polyakov. By introducing the following definitions :

and

F = - 21 A 2 N
w T3, B -3 B -ge, 0,8 &2, ¢
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this solution has the form :

Fooo Cike Xe
ik er

and is the magnetic field of a magnetic charge % at the origin.

'\’ . I3 .
The dual Fuv of the field Fuv is :

N

21 B _ 1 A B A
Fuv =7 fuvaB F® = Ze uwag  Fabe %y 9 $b 3" o
so that the dual current is :

Wwo_.vpE 1 v aA BA
=2 Fuv = Ze Suvap Fabe 3 ($a 3" by 9 ¢c)

This is a conserved current au*j“ = 0. It is the magnetic current, which does
not follow from any application of Noether's theorem to the lagrangean. The

magnetic charge is :
n, : A 1A k A
%magn = [ x 3y = 7 [ds" €ijk Sabc @ (82 27 95 2" 0c)
(1. 110)

Integration gives :

1 A A A
Unagn = e § ds; €55k abe (Pa 25 ®p 2k o)

where the integration is over a spherical surface in the 1imit of infinite
radius. This is 4w times an integral number so that

4un
Qnagn = ~e (1. 110a)
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i a two-dimen-
The integer n is the so-called Kronecker index of the map betweeﬁ -
. X n
sional sphere in the (x, y, z) space and a two-dimensional sphere i
(61> 05, ¢3) space.

The 't Hooft-Polyakov monopople solution exists only for :o:;zbzl;?:an
gauge groups such as SO(3) and distinguishes itself from t?e caji E]arity’
group  U(1) in which case the magnetic monopole has a string sing
the Dirac magnetic monopole (see Chap. II, § II. 5).

d) Instantons

i i where the inter-
If we consider the Yang-Mills gauge fields Aua(:) e e for
nal index a = 1, 2, 3 is associated to the SU(2) group, the lag
this field in the absence of other sources is :

Z.

1 uv
¥ Fu\)a F

where :

A, A
F““a =9 Aua - au Ava * 9 €5h¢ Aub ue

The equations of motion are :

HY uv
W == €abe Mve Fb

or

HY _
DV 3 ab Fb =0

. . W
if the Covariant derivative on the isovector Fb s

= A
Dv;ab =3, Sap * 9 €apc A
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Let us define the matrix fields :

T

_ a
Au = Aua -

T
= a _ - -
Flo = Fova 2= 3y A, - 3, A, - 9 [ A AV]
then the field equations will take the form :

2, PV 45 g [Aw FHV ]= 0 (1. 111)

The first regular solution investigated of this equation, with
spherical symmetry is of the form :

. 2
AL(x) = :;Zl_;‘z u(x) 3, u(x) (1. 112)
where
w2 = (X1)2 + (Xz)2 + (x3)2 + (x4)2 (1. 112a)

u(x) = % (x7 - iXx - T)

and 8 s a parameter. Here we have considered an imaginary time coordinate :

4 .
x* = x°

For large r, A (x) tends to the form gt 3, glx) which is a pure gauge

since it gives Fuv =0 in the limit r » = :

.-
reey ACX) > - i uT(x) 3 u(x), F, >0 (1. 113)
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The action of this field in Minkwoski space is :
| 4 pva
S=-g f d*x F o F
which is equal to :
1 2 4
=7 f(f a - §2a) d’x

where we define :

kK _ ok . J _ 1 Jjk2 - ke
E -Fa, Ba—?e Fa

4 . .0

Now in Euclidean coordinates, that is, with the choice x = i x  we have :

. . ;o Kk

hence
21 2 2 2
Z ( a - B 2'(t(4) a)
The euclidean action is thus taken to be
1 4 1 4 ny
S = HY I. 114
7 f wva fa dx=35Tr [d x Fy F ( )

It is positive definite and the condition that F +0 as r+w

is a condition for S to be finite; this is satisfied, as stated above, for

Au a pure gauge,

Now we see that asymptotically there is a correspondence between the
S-Sphere of the euclidean (xl, xz, x2, x4) space with radius r given in
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(I. 112a) and a sphere S3 in the internal space which is equivalent to the
group SU(2) which is the set of all matrices 2 x 2 of the form :

A - ( a, + i ag i ay + a, )
ia, - a, a4 -4 ay

such that

al2 + az2 + a32 + 342 =1

The function u(x), (1. 112a), maps the sphere 53 of the euclidean foug-dimen-
sional space on the space of the group SU(2), which is also a sphere S~. Note

the difference between this map and that defined by the trivial pure gauge

Au = 0 (both this and the asymptotic Au given in (I. 113) lead to a vanishing
field Fuv and thus define vacuum states). The trivial gauge Au = 0 maps

the euclidean S~ sphere into a single point of the internal space and there-

fore is defined by the identity with winding number equal to zero.

The topological charge is given by :

2
Q= —li;:z Id"x Tr (F,, ?‘W) (1. 115)

where
n,

1
Fuv = Z €uvas Fap

(note that u, v =1, 2, 3, 4 and that in euclidean space there is no differen-
ce between contravariant and covariant tensors). From the inequality

1 (.4 vo2
5 Id x Tr (Fuv Fuv) >0
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it follows that S (I. 114) has a Tower bound determined by the topological
charge :

2
8n°Q
Sz'zz-

The lower bound is attained by S for self-dual or anti-self-dual fields :

Fo=sF
=+
[

AV)
It is these solutions that are called instantons or anti-instantons.

The integrand is a total divergence :

for regular A,'s such that 9 g A, =3 9, A
Therefore :
2
I. 116)
Q:-—g_2§ J (x) do (
16nc J 3 @ ¥

S
3
where ¢ O, 1s the surface element of the sphere S.
The integrals (I. 114) and (I. 115) converge for the asymp?otic .
behaviour of A, in (I. 113) and in this case it is shown that Q will be o
the form n g2 "where n - 0, +1, + 2, ... is the winding number of the
homotopy c1ass of the mapping s3 . su(2).
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We mention that the importance of solutions such as the instantons,
expressed in spaces with an imaginary time coordinate is tied to the fact that
only in such euclidean space integral forms essential to define generating
functionals of Green functions are well defined. In such theories the physical
Green functions result from the former by analytic continuation.

We invite the interested reader to consult the literature24-38.we hope to
have arisen his interest in the question of topological quantum numbers and
soliton and instanton solutions of the non-linear equations of gauge field
theories. In these theories, “the topology of the internal symmetry group
conspires with the topology of space-time in such a way that particularly stable
structures (for these solutions) appear", in the words of Hans Joos.

PROBLEMS

I - 1. a) Establish the conditions on the matrix D(2) which transforms a Dirac
spinor y(x), ¢'(x')= D(2) ¥(x), in correspondence to a proper orthochronous

Lorentz transformation so that Dirac's equation be invariant under these trans-
formations.

b) Give the twenty - six equations which are satisfied by the thirty two real
matrix elements of D(%).

C)OShOW that v% D*(2) y° = - D'l(z) in the case of heterochronous transformations
(27, <-1).
0 —

d) Give the equation and the transformation law of the adjoint spinor ¥(x)

I - 2. A- Deduce the transformation laws under proper or improper orthochronous
Lorentz t ] i =1 8,
ransformations a) of the dual tensor field ?uv(x) =7 €v08 FO™(x)

of an antisymmetric tensor F°"B ; b) of the following Dirac bilinear forms in
the spinors y(x) and n(x) :

S(x) = ¥(x) n(x),

V(x) = 5(x) v n(x),
M(x) = §(x) Y y° n(x)
S™(x) = $(x) oM n(x)

P(x) = 1 $(x) v° n(x)

.
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B- a) Deduce the infinitesimal and the finite forms of the matrix D(2) in

terms of the Lorentz transformation parameters @y = 9y 9,3 Rux gAB and the
y-matrices.

b) Find the four Dirac matrices in the Majorana representation in which all their

elements are 0, + i, - i, that is :
by *
(y) = - ¥

where the star means complex conjugation. Write the representation in which

¢) Show that if a (Majorana) spinor is chosen as real in this representation,
1t will remain real in all Lorentz frames.

I - 3. Show that the following equation proposed by Rarita and Schwinger to
describe free vector spinor fields ¢"(x),

. ; . v -
(i v % ~ m)y¥(x) - % (YW aV+y” 3“)‘1’\)+% (v [ v° 3, *m] ) ¥y = 0

Is equivalent to Dirac's equation for y" and the subsidiary conditions given

in equation (I. 6), namely :

(1 ¥* 5 -m ¥ =0,
v, W =0,
3, M=o

I-a a) Consider a two dimensional Minkowski space-time (one time, one space

coordinates). what are the possible forms of Dirac's equation for a free spinor
; X )
(with how many components) ? What are the matrices corresponding to Y and vy,

v = - =
8Y 7 Is the commutation relation % (Y y¥ + v y") = " where g,,=-9;; =1,
9%k = O for i ¢k, still satisfied ? What is the matrix corresponding to

5 .5 .
Y ()T = 40, (Ys)2 =1, v° Y, =Y v2, u =0, 17 What are the possible
u

conserved currents ? what are the equations for massless spinors, for left-
handed and righ-handed components ?
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I - 5. A scalar field ¢ has a non-linear interaction with a spinor field ¢
defined by the term L' in the lagrangean :

L=1L,+ L'

where
L

o= 3 (0, 0-mtdd) U o - My - g (1, BN M

L =g hve oy

g and K are coupling constants.

Find a) the equations of motion for o, ¥, ¥ ; b) the energy-momentum tensor
of the system ; c) the hamiltonian as a power series in K o.

1 - 6. Calculate the energy of the anti-kink solution of the equation :

2 2 2 3 a
(3 0" ) x - ) © (%, xo) + X9 (x, xo) =0

I - 7. Show that the time-independent function of the coordinate x :

9, (x) = % arc tan (x /a)

is a static solution of the two dimensional sine-Gordon equation :

2 2 .
(2 o~ 9 x) © (X, xo) + % sin B ¢ (x, xo) =0

and that the corresponding energy is :

I - 8. Show that the equation of Probl. I - 3. is a particular case of the family
of equations :

(.i Y- a_m)gGB_iA (Yﬁae+YBaa) + YG [B (.i Y - 8) + cm]YB€w6= 0

where the constants A, B, C satisfy conditions so that equations (I. 6) are

satisfied. a) What are these conditions ?

b) For what values of A, B, C 1is the above equation invariant for m =0 under
the gauge transformation W'y = Y, + 9, © where ¢ is an arbitrary spinor ?

¢) Show that with the definitijon of y5 in § I-1. g one has :

5 B _ - -
Eaguv ¥ Y = 1Y, Yo Yy I Yo gua Yo ¥ 9y T



CHAPTER i

The Electromagnetic Gauge Field
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I1. 1 - FIELD INTERACTIONS

The examples given in the preceding paragraphs referred all to free
fields. Physical phenomena, however, are due to interactions ; therefore we must
seek how to construct the interactions among fields. These may be defined by
adding to the free field lagrangeans convenient Poincaré-invariant terms which
depend on both fields. Thus for an interaction of a scalar field with itself
we have the Iagrangean* :

2 + +
L=3“w+8uw-mww-%(w 0)? (II. 1)
which gives rise to a non-linear equation of motion for ¢ :

2

(o+m" +n w+w) ¢ =0 (I1. la)

An interaction between a scalar and a spinor field may be described by a term
f ¢ ¢ o so that the lagrangean of such a system i$ :

2

-
n

iy 23-Muy+ % (3u oMo-m wz) -

4 -
fio+fivoe (I1. 2)
where f and X are coupling constants and ¢ 1is real.
In the beta-decay of the lepton-muon :
-> e+-
WY, + v

. (11. 3)

it is known that this process is described by a coupling of two expressions, the
so-called weak currents, for the p-field and for the e-field :

o - o 5
L = X 1 - X
(1) v () (1= y7) e (x)
a+ _ oz 0pq _ 5
% (2) = e(x) y (1 -+v7) ve(x) (11. 3a)
Following the convention usually adopted we reserve the term %' for the cou~

pling constant of the quartic self-interaction of a real scalar field (the
denominator is convenient for combinatorial reasoms in the study of Feynman

diagrams for this theory). For complex fields we usually denote the coupling
constant by n.
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so that the corresponding lagrangean has the form :

-
n

u(iy -3 -m&u+e(1y-3-me)e +

+vu‘iyoa(\,u)L+ve’iy.a(\)e)L-i-

+

26, v ) (1 - ¥ )ve) (I1. 3b)

where the two neutrinos vy Ve are assumed to be massless and left-handed
polarized

5 .
v er - v ¥y

The electromagnetic interaction with an electron field is described
by the lagrangean :

1 = (s ~
L=_1Fuv Fu\)+e(1Y.a-m)e-eJuAu (11-4)

where :
3 (x) = &(x) v e(x)
FIV = g% Al - ¥ Y (I1. 4a)

and A" (x) 1is the electromagnetic field; the corresponding equations of motion
are :

5, F(x) = e " (x) (I1. 4b)

i M - = = i
(iy Du m) e (x) = 0, D, =3, +ie A,

We shall now study the important notion of gauge fields and show
that the electromagnetic field is the simplest example of a gauge field.
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II. 2 - THE ELECTROMAGNETIC FIELD AS A GAUGE FIELD

We have seen that the lagrangeans of complex fields ¢*(x) are
constructed in such a way as to be hermitian since the observables derived from
the lagrangean, such as the energy-momentum tensor, the hamiltonian, etc, must

have real eigenvalues. They are therefore invariant under the global gauge group
U(1), that is if

W(x) > o (x) = e 9%(x),
' . (11. 5)
W (x) » 0 (x) = eV (x)
w = real constant
then :
L (x)s 0% (1), M 9'%(x), ¥ 91 (x)) =
(11. 6)

= L (), ™ (x), 3" 4% (x), 3¥ ¢*F (x))

The notion of gauge field first arose from the postulate that these
lagrangeans be also invariant under the local gauge group, that is, when the pa-
rameter w depends on Xx :

w = 0(x)

This means that we must be free to choose a phase for ¢a(x) in each point of
space-time which is not necessarily the same when we change the point ; and that
the observables do not depend on this choice.

Let us for convenience write :

w(x) =e A (x)

where e is the elementary electric charge. Under the transformation :

P (x) = U (A(x)) ¥*(x)

W (x) = UR(A() ) (x), (11. 7)

U (A(x)) = A
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the derivatives of the field will transform as follows :

My¥(x) = U (A(x))3" v¥(x) + [a“ U(A(x))]qf‘(x)

T (I1. 8)
My (x) = ux(a(x) ! ¥ (x) + [5“ u*(A(x))]¢“*(x)
and products of the form :
¢ 2 0, ¥E(x)
are not invariant :
M tex) g, 0 B0 £ 9" w0 94 0 9P(x) (1I. 8)

What is the change of the lagrangean under the transformations
(II. 7) ? We have, for an infinitesimal transformation :

¢ =1ie A(x) y(x),
syt =-ie A(x) w+(x),
s (3" w) =i e A(x) ¥ p(x) + i e p(x) ¥ A(x)
8 (" p*) = - i en(x) 3 pt(x) - i evt(x) oM A(x)
so that
9 L 3 L u
SLl=x—=61Yy + 8§ (3" y) + hec. =
o¥ )
. ie A; CH S T AN
Ty 5 lp+
oL n u o+ 9L
= Y- (3 ¥) ‘
a(a" v) a(a* vh)

+

ie(a“A¥_L -+ll:___.é
: (" ) ! a(a" ¢
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But as L 1is invariant for A constant

§ L =0 for A(x) = w= const.

then
LIZUJ-;.BL 3¥ -
2y a(a" v)
gt 2 & - _E_t — (¥ ") =0
9y 3(3" v)

Therefore we see that under the group (II. 7) L changes as follows
(see equation (I. 46)) :

§L=-eji(x ™ A(x) (11. 8b)

The reason for the non-invariance of the lagragean under infinitesimal or
finite local phase transformations such as (II. 7) is the occurence of the term
in au U(x) 1in the derivative of vy, (II. 8). A generalization of this lagrangean
which remains invariant under the group of local transformations (II. 7) will be
obtained if we can find a generalized derivative of 1y, Du ¥, such that Du /]
transforms like y :

(D, $%(x))'= VA E,7(x)) 5 (07, v')™ = U a)O", ¥ (x)) (11, 9)

As the derivative D must contain the usual derivative au as a
particular case we introduce a new field A¥(x), a real vector field such that :

0¥ y*(x) = (" + i e AM(x)) y%(x)
(I1. 10)
(0" 92(x))* = DM g™ (x) = (¥ - i e A¥(x)) ¥**(x)

Equations (II. 9) and (II. 10) will give us the transformation law of the so-
called vector gauge field Au(x) corresponding to equations (II. 7) :

v -1, . -1
eA p e Ue Au U=+ (3u uyu
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or .
R o -1 -1
Au-u.(Au 3, (U UTU=W =, (U - ugauu )
For U(x) = oieA(x) we have :
AM(x) = A¥(x) - ¥ A(x) (11. 11)

therefore the lagrangean constructed with the fields wa(x), w“+(x),
the new vector gauge field AY(x) and the covariant derivative (II. 9) is gauge
invariant since now, as a result of the equations (II. 7), (IT. 9), (II. 10)
and (II. 11) :

' 1yt 1 ] B
O ™)™ g0 (00, By = (0" v%) 2y (0, o) (11. 12)
since :

U (A) U (A) =1
To this lagrangean

L (wu, Du wa’ u’(l"" (Du wa)+)
we must now add a term referring to the field A“(x) alone and this term, inva-
riant under the transformations (II. 12), is :

L. = - 1 FUV E

AT PV FL(0)

II. 13
FV(x) = 3V A%(x) - 3% AV (x) ( g

Indeed the lagrangean (II. 13) contains a new field A" in interaction with
the matter fields y*. The complete lagrangean must contain a piece which
describes the gauge field in the absence of the field u®.

The covariant derivative components as defined by equations (II. 10)
do not commute ; one has :

[Du , DV] =-ie (3,A -3 A) (11. 13b)
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We therefore take this invariant curl as the definition of F

- - =1 I. 13c
Fo= 3y A, - 3, A = ¢ [Du, D, ] (1 )

and this is the only gauge-invariant term, with first derivatives of the gauge-
field AY(x) ; a term of the form Au AY would give a mass to the field A
and would not be gauge invariant.

The gauge invariant lagrangean is thus :

G2 Lav, oV A, 0, 0, (0 o)) -

(11. 14)
= - 3PV R0+ L 6 0M R, (0 )

Clearly, the covariant variational principle requires that the covariant derivatis
p* y*, and not " ¢*, be one of the field variables to be varied.

If we vary the fields *(x), D" ¢*(x) for fixed A"(x) (that is,
& A¥ = 0) the variation principle (I. 2), (I. 2a) will now be :

§S = J % d :5%? ¥ (x) + =2 Z

2w o)
3 v*(x) a(o¥ ¥*(x)) " vea)

(I1. 14a)
=Jd4x3 -.E.;_ZZ_D* _Z)_Z.__%
x))

s [s3
av¥(x) M a(oM v v
+ qux ¥ <._3_°_gj_..._5u,°‘(x)
a(o" p*(x))

One thus obtains the equations of motion

AP P

30" ¥ (x)) @ ¥¥(x) (11 19)

and similarly, if one varies wa+’ pH* wa+

oM 9L ag

(0% 9% (x)) T3 = 00 =0 (11. 15a)




- 9] -

Variation of the field AY for fixed ¢® will lead to the A-field equations :

5 2L 2L 0

v (11. 16)
3(a, Au(x)) d Au(x) .
which have the form : JE?’
3. F*V(x) a- O (11. 16a)
v ] Au(x)
TV *
From the defintion of F it follows that :
av FGB + BB F\n + aa FB\) = 0 (II. lﬁb)

The latter, (II. 16a) and (II. 16b) are the Maxwell equations for the electro-
magnetic field if we define the conserved current :

2 L

AT
e jr(x) = -
3 A,(x) (11. 16c)

U =

au j"(x) =0

In view of equations (II. 9) and (II. 14) we have :
R : ot 3 L _ 9oL o
J(x) =1 ;w (x) (%) (II. 16d)
3(D,, vt 3(D,, %)

Equations (II. 16) can be written

3 _EL:égfL - _égééf? (11. 16e)
Vo3 Fo(X) 3 A (x)

—
* 1f 1 af .
guv(x) =7 €hvop F™(x) is the dual of FGB(x), equation (II. 16b) becomes :

v
3, FW (x) =0

The - - . » -
o segond hand side is null since there is no conserved axial vector electro-
agnetic current for massive spinor fields.
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which shows that the current is qauge-invariant

» L

e ¥(x) = -3,

II. 16f
? Fuv(x) ( )

Note that the following identity holds
(T (x) g(x)) = (D" £ (x)) g(x) + F(x) (D" g(x)) (1. 169)

which is helpful to show immediately the conservation of the current from its

expression (II. 16d). Indeed the invariance of the lagrangean under the gauge
transformations

w.a(x) - eieA(x) wa(x)

DM' gr®(x) = e MX) pH &y

means that

96 J£Z7 . aL s a L

S L My - II. 16h
3 A(x) 2 ¢* (oM ¢ (0" v ( )

L
1beﬁ a L _ (0" ¢yt 3 =0
Ul a(0" v*)’

The equations (II. 15), (II. 15a) describe the evolution of the field w“ in
interaction with the electromagnetic field AY(x).

In view of the transformations (II. 11) and of the gauge invariance,
if A“(x) is a solution of these equations, then an infinite set of solutions
will be obtained by formula (II. 11), depending on an arbitrary function A(x).

In order to obtain a definite solution we may make a particular choice
of the gauge function and thus eliminate (some of) the ambiguity in AY. This
can best be done by imposing the Lorentz gauge condition :

3, A¥(x) = 0 (I11. 17)

If a given solution &%(x) does not satisfy this condition, then with <"
we construct another solution

Ax) = 2"(x) + 3" A(x)
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and choose A(x) so that AM(x) will satisfy equation (II. 17), that is A(x)
must be a solution of the equation :
a A(x) = - au a"(x)

We may, for instance, choose a retarded solution of this equation :

M) = [ G,

retlx = ¥) (-8, Pyndly

where
64(x -y

o Goplx - )
gret(x =)

0 for x°«< yo

Physically a subsidiary condition is required by the fact that a free
electromagnetic field as described by AY(x), contains four components and
therefore in the quantized theory A"(x) would describe transverse photons
(components A1s Ay), longitudinal photons (component  A3) and time-like photons
(component AO).Only transverse photons are observed so the spurious components
A3 rand A, must give no contribution to physical observations.

IT. 3 - MAXWELL'S EQUATIONS AND THE PHOTON PROPAGATOR. GAUGE FIXING CONDITIONS

Maxwell's equations (II. 16a), (II. 16b) may be written in virtue of
the definition of F"Y, equation (II. 13) :

o A¥(x) - a¥(3, A%(x)) = §H(x) (1I. 18)

Now this equation admits of no Green's function. Indeed a Green's function of
equation (11, 18)

{u gV - ¥ 3V } A,(x) = Mx)

would satisfy the equation

{n v - ¢ a"} ?\,A(x - x') = &% shix - x*)
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In Fourier representation

Goalx = x')

4 . )
[ d’k ngll(k) o ik(x - x')
(2m)

64(x - x")

[

PR

I d -ik(x -x")
(2m)

we have, from the latter equation :

{-@ v b G- e (I1. 19)

Now the function SE?;A(k) does not exist. For it would have to be of the
form :

G k) = AK) K2 g, + B(K) k k, (11. 19a)

with A(k) and B(k) functions of k2. But then this would give :

{ - KE MV 4 kM Y } ngik(k) =

= 24 _ 2 u }
AK) K2 { - kB o 4 Rk,

u
#87

no function A(k) and B(k) exists that satisfy equations (II. 19) and
(II. 19a).

We therefore need to impose a condition on the field A which amounts
to fixing the gauge, for obtaining a solution of Maxwell's equations. The choice
of gauge breaks the initial gauge invariance. Lorentz condition stil1l maintains
gauge invariance for those functions A(x) which satisfy the wave equation :

oA(x) = 0 (I1. 19b)



- 95 -

Other gauge choices are possible such as the Coulomb gauge :
> ->
VA =0 (II. 17a)

If one imposes the subsidiary condition (II. 17) then equation
(IT. 16a), (II. 16b) are equivalent to

o A%(x) = iV(x), 3, A%(x) = 0 (I1. 20)

The Green's function of this equation is therefore :

[a)

De(k) (11. 21)

- w o
ngv(k) = - ;2‘ = 9

where the denominator means k2 + je. This is the Feynman propagator for the
photon field.

An alternative way to obtain the equations (II. 20), (II. 21) is to
include a term

- L Ax(x))z (11. 22)
2

a

in the lagrangean (II. 14) and use the method of the Lagrange multipliers :
o _ 1 v a ot ol Al Oy 1 A2
g--zF Fov + LW 0, D7 w, (DY y)7) 2a(a,\A) (I1. 23)
The variation of ,SZ’ with fixed a gives the equation :
{ng""+(—§-— 1) a"} A(x) = (%) (I1. 23a)
of which the green's function is such that
@ (Lo k“}?‘ (k) = & (11. 23b)
a VA A
and is therefore :
' S |
Tt =L L

k k
- - u_v . 23
uv (1 a) —kz—— } (II C)
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For a = 1 one obtains the previous result. The case 1im a = 0 gives the
Landau propagator ; the physical results must, however, be independent from

the gauge choice, i e, from a. Note that the Landau propagator satisfies the
equation

KH {6 W(k) =0

similar to the Lorentz condition for the field Au'

II. 4 - THE ENERGY-MOMENTUM TENSOR OF FIELDS IN INTERACTION WITH THE
ELECTROMAGNETIC FIELD

The energy-momentum tensor of the matter fields wa in the presence
of an electromagnetic field is defined by

T = 2L 0’ 4 b, - L

I1. 24
" 3(D,, ) ( )

as a generalization of equation (I. 32).

The divergence of Tm”” is :

au TmU\J =3 ) g D\) ‘,‘Q

H (+]
a(0, %)

+h.c. -3 ;589

If one takes account of the identity (II. 16g), of the field equations (II. 15),
(II. 15a) and of the equation (II. 16h) one obtains :

3 T MV . ag [Du’ D\J] wa +

uom B(Du wﬂ)
+ [D“*, D\’*] el _3_;_%__
(D" v™y*

Now
[D“, D"] ¥ = de F¥® (11. 25)
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So, in view of the equation (II. 16d) :

ch Tm““ =e PV 3, (%) (I1. 26)

The second hand-side is the Lorentz force. One sees easily that, for instance :
—95-3 =pE+ [3 X E]
dx

where P s given by (I. 57) and

p=3%0) EX=r%), 8=, (3, AMx) - 3, A%(x))

Note that the total energy-momentum tensor is in fact :

THY - 3.,? (0Y ¢) + h.c. + 3..%8\) %g " ggu\)

Qa
total a(Du Y) 9 Fuu
(11. 27)
which gives for the electromagnetic part
uv  _ _ cau gBu 1 B Hv
T M F®¥ F 9p * 7 (F® Fug) 9 (I1. 28)

whence :

THY . AV
au M e F® I

a result which follows from the equations (II. 16a), (II. 16b) and (II. 16c).

Therefore :

uv -
% Thotar = O (11. 29)
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I1. 5 - NON-INTEGRABLE PHASE FACTOR AND THE INTEGRAL FORMULATION OF GAUGE
FIELD THEORIES

In the § II. 2 the notion of electromagnetic field was presented as
a vector gauge field necessary to the invariance of the equations of motijon
of complex fields under the local gauge group U(1). Another formulation
of gauge field theory, mathematically based on the so-called fiber-bundle

theory, has been developed by Wu and Yang, which sheds a deeper 1ight on the
mathematical nature of gauge field theories.

As it follows from the gauge transformation equation for the electro-

magnetic potential field Au(x), (II. 11), the electromagnetic field tensor
Fuv is gauge ijnvariant :

' =

Fav = Pl
This fact has led to the traditional conception that the field tensor Fuv
determines all electromagnetic effects, their descripton by the vector field

Au being a convenient auxiliary method for determining Fuv'

In 1959, Aharonov and Bohm proposed an experiment, which was carried
out, and which definitely shows that if Fuv determines all electromagnetic
phenomena in classical theory, this is not true whenever the electrons (or any

other charged particles) are in conditions such as to present quantum effects
and are therefore described by quantum mechanics.

The principle of the Aharonov - Bohm experiment is indicated in

Fig. II. 1, electrons are incident from the left towards a cylindrical region
from which they are excluded.

PRI screen
4 -——— \\
,/ -~ \\\\
\
— ,,/ SNo s .
—— 31 Interference fringes
— \\\\ //’/
electron beam \\\\~_,”/
~N /,
N ——
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Inside the cylinder one may set up a magnetic flux which is confined
to this region, the fields vanishing outside the cylinder. Experiment shows that
the interference fringes produced by the electrons on a screen (due to the
fact that each electon may follow a path above or below the cylinder) when there
is no magnetic flux, are shifted when a magnetic flux is set up in the cylinder,
the electric and magnetic field being kept zero outside the cylinder. Aharonov

and Bohm predicted therefore that there may exist electromagnetic action on
electrons in region where Fuv =0

Wu and Yang have shown that if the amplitude for the experiment with
no magnetic flux in the cylinder is :

S=f 4 f

where §* (f7) 1is the amplitude when the lower (upper) paths are blocked,
then the amplitude when there is magnetic flux will be of the form :

| u
1e?Aum

s'=f"+f e (II. 30)

where the integration is over the closed loop on the cylinder wall. Thus, the
flux of the magnetic field through a surface which cuts the cylinder determines

the interference effects.

The relative phase difference between f  and f in (II. 30)
namely :

ie§A dx¥ (I1. 31)
e H

determines the phase shift in the interference fringes. This effect is, however,
gauge-invariant if the gauge phase factor is a simple-valued function. Thus,
if two fields Aua and Aub are gauge-transformed from one another :

b

= pQ _
Au = Au au A(x)
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they give the same interference effect on the screen provided that the
function :

ol € A(x)

be single-valued. Indeed :
u
ie§Aadx“ ie§Abdx
e u = e u
if
: ieéa A(x)dx"'
e v =1

and so, if :

2n

A(x)]o = 2mn

(the gauge function itself need not be single valued).

The fundamental concept of a non- integrable phase factor

®p = e (11. 32)
is thus introduced, where the integration is over any path from point P to
point Q, and electromagnetism, in the words of Wu and Yang, is the gauge-

invariant manifestation of this phase factor, if the physical observables
are independent from an arbitrary gauge transformation :

Q P
ie JP A, dx¥ -ie A(Q) ie IQ A, &M ie A(P)
— e e e

e
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The gauge-transformed of the phase-factor (II. 32) contains the gauge function
A(x) only at the end points of the path. For a closed loop,

A(P) = A(Q)
and the phase factor is invariant.

0f course, the consideration of this phase factor raises the problem
of the analytic behaviour of the field Au(x) in space-time. If Au(x) has
singularities along some paths the non-integrable phase factor is not defined
through these paths and conditions have to be found to define the integral in
these cases.

A notable example is that of Dirac's magnetic monopole, namely a
magnetic field E(x), solution of Maxwell's equation over all space excluding
the origin and which has the form

->

B(x) = f% I (I11. 33)

where r = |X|. This represents a monopole of strength (magnetic charge) ¢
located at the origin of the coordinates. The region of this solution excludes
the origin in three-dimensional space or the world line of the monopole in
space-time,

As in the region of definition we have VB =0, a vector potential
A(x) may be found such that

B=VxA

One possible choice for R is, in polar coordinates :

Al - al -, Al -

6 . o 7stp (1 - cos 6) (I1. 34)
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and another one is :

11 Im _ I __
Al =atl =0, A = - mdmp (L+cose) (11. 35)
so that : 5 L1l
1,11, - 1 3 s 1,11 | _ o .
Br=(3x7x )r'—'_—rsme(’a'é'(smeA m) o ) -3-2
I,II
3 A a(r A )
_ I,IT, - 1 ro s © _
Be = (VxR )e 2 Tsmoe ( X sin 6 7 )

6

\"ar 38 )=°

I,I1 I,11
a(r A2 3 A’
_ 1,11 1/ r
B-(Vxﬁ )(P T

The first solution (II. 34) is singular only at 6 = m whereas the
second solution (II. 35) is singular only at 6 = 0. Both types of singularities
may be called strings of singularities. Therefore the region of definition of the
monopole solutions will be the intersection of two pieces of space, one, Rl’

which excludes © = m (the lower z half-axis) the other, R,, which excludes
6 = 0 (the upper z half-axis) : Ry n RZ'

If we take a sphere with center at the origin and consider a parallel

over its upper surface defined by r, 8, v the integral of A along this parallel
will give the magnetic flux through the upper cap of the sphere since

ds - 8 = § A.g - é dorsine AIw =2mg (1- cos 6) (I1. 36)
upper cap parallel

This is correct since it vanishes when the parallel shrinks to a point, 6 =+ O.
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If we had not excluded the lower half-axis from the region of
definition, in the 1imit 6 - n the parallel would tend to a point, the south
pole, the integral along the parallel would tend to zero but the formula (II. 36)
would give 4 m g at this limit.

The flux through the lower cap cannot be calculated with Al since
it would be, for this solution :

! ds - B = - § deo rsine Alw =-2mng(1-cos @)

ower cap
and this does not tend to zero as 6 - =.

The correct flux is obtained with the solution (II. 35) :

f&‘s-§=-fdw r sin @ AIIw=2ﬂg(1+cose) (11. 37)
lower cap

which has the correct behaviour at © - w ; the total flux through the upper
and lower caps will be 4 n g.

If we consider the non-integrable phase factor between two points
P and Q over the sherical surface belonging to the region R; N R, then
we have two equivalent descriptions corresponding to the two solutions (II. 34),
(I1. 35) :

Q1
: H
I . ie IP A " dx
PQ

Q
iefA” dx*
5 S A,
PQ
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1f one compares these two solutions, (II. 34), (I1. 35) one sees that :

I _ LIl 249
A 0 A © t¥sine

therefore
]xl.a*r=j7x”.a’r+]w-a:~
that is, for P and Q on a parallel at r, 9, ¢ :
Q 1 (@ . 1 Q
I rsinedoehA = I rsinedoA +249 f d o
P e ® P
we see that :

1 _ 2iegw(Q 11 _-2igo(P) (I1. 38)
¢PQ—E ‘PPQE

where S = e2 iego is the gauge transformation on the phase factor. If

we take the closed path from ©(P) = 0 to o(Q) = 27 we shall have

1 _ I
®pgp = ® pop

if the following condition is satisfied

41eg=27n

with n an integer.

This is the Dirac's quantization of the magnetic strength g :

g =5 (11. 38a)
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The gauge transformation is therefore single-valued and expressed by :

What we did was thus : 1) divide the space into two overlapping
regions R1 and R2 3 2) define AIu and AIIU, each singularity free in
. I I
Rl and R2 respectively, and such that 3) Fuv = av- A o au A v =

- T _ II I 11 . .
av A u Bu A v and 4) A b and A u differ by a gauge transformation.

In order to define the phase factor associated to a path we have to know if
the path is entirely within one of the regions, Ra’ say, then Aau will be
inserted in the integrand of the phase factor. If the path is enterely inside
the overlapping region there will be two possible phase factors related by

a gauge transformation such as (II. 38). For a path that criss-crosses in

and out of the overlapping region a phase factor can be defined by considering
the phase factor for each path in each region and the gauge transformation
which leads from the final point in the first region to the first point

in the second region, and by multiplying them together.

This conception of gauge fields and transformations has been developed
by Yang and co-workers, and extended to the non-abelian gauge field theories.
They showed that the mathematical basis of this integral approach to gauge
theories is the theory of fiber bundles. The topopogical nature of the theory
is thus revealed ; the differential approach, although useful in computation,

did not bring to surface this mathematical inner property of gauge field
theories 102,103,37,38)

A final remark is the following. If in classical physics the action

integral corresponding to the interaction between a point electron with
charge ep and an electromagnetic field is :

- e [ A, (Z(s)) ic’é—u ds (I1. 39)
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where s is the proper-time, then the coupling constant e in the phase
factor (II. 31) is related to e, by

e
P

= I1. 40

e re ( )

That ep is the particle charge results from the fact that Maxwell's equations
follow from an action principle containing (II. 39) and from Gauss theorem

and Poisson's equation. The relation (II. 40) follows from the rule that D]J
(which contains e and not eP) must replace au in the quantum-particle
equations like Dirac's. Planck's constant appears therefore in the gquantisation
equation (II. 38a) expressed in terms of the particle charge e .

PROBLEMS

IT - 1. From the action for a system of classical particle and electromagnetic
field (we re-establish the velocity of light c) :

S=-myc [ds - [d“x P(x) F () - & Ij“(x) A0 dx

where the current is :
i
P = [ - 2 (s)) s

deduce a) the classical equations of motion of the particle by variation of the
path Z%(s) ; b) the classical field equations by variation of the field ;
c) given the energy-momentum tensor of a classical particle :
wo_ 2 ( dz¥ d2° 4
™ =m c J—d.s-—d-s-c (x - Z(s)) ds
show that

UV v =
3v(T m? T field) =0
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d) with the energy-momentum tensor T"\’m above calculate the total orbital
angular momentum of a classical particle.

IT - 2. a) Write Maxwell's equations

3 Fuvzeju

v
v
Bv FF"' =0
v -1 _uvaB
F = -2 € FaB

in terms of the electric field EF = FOk, the magnetic field B = % €ken P

and the charge and current densities, p(x) = j%(x) and J(x).

b) Which substitution between the fields E and B leaves the free field
equations invariant ?

c) In the presence of matter, a magnetic monopole current would be needed for
an extension of the above symmetry to the field equations. What is the transfor-
mation law of the magnetic current under improper Lorentz transformations ?

IT - 3. Discuss the electromagnetic field equations in a two dimensional
Minkowski space, in interaction with a spinor field.

IT - 4. a) Give the field equations and the hamiltonian of an electromagnetic
field in interaction with a Dirac field in the Coulomb gauge.

b) Show that the Coulomb interaction energy between the charges is contained
in the field energy.
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Examples of Electrodynamical Systems
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IIT. 1 - SCALAR ELECTRODYNAMICS

This is the case of a scalar complex field «(x), w+(x) with
mass m and which may have a self-interaction term, with lagrangean given in
equation (II. 1).

The electromagnetic gauge-invariant lagrangean for this field is,
according to equation (II. 14) :

.. FFVEL+ (M 9)t (0, 0) -

¢ o -3 (0 0% (111 1)

The interaction lagrangean between the scalar field and the electromagnetic
field is :

i + U Al F 2 ;a0 +
%-18{(93&0 (Bw)w}Au+e(AAa)w "
which is added to the -field Tlagrangean
- |11 + _2+ -n + 2
Zo (3" o) (auw) m @ o 7(!0 0)

and the vy-lagrangean :

R A

Yy~ © 3 v

The reader will show that under the transformations (II. 7), (II. 10, (II. 11)
one will have

.529; QSEf: + .SZf; + GSZf;Y = csgfi + =52f2'+ esgf;;

only the sum .igi: + °§ZZN is gauge-invariant as is °SE7Y alone.
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The current is :

P --1 2Ly {600 0 0(x) - (0 0x))* olx) |

2 Au(x)

i

i{w“a“w-(a“w)*w}-ze;ﬂ‘ o © (1I1. 2)
and the field equations :

3, FV(x) = e ¥(x)

(ITI. 3)
u 2 0t \} =0
{(D D, +m" + 32 (o ©) tolx)
The energy-momentum tensor of the «o-field is :
T = (0 0) (0¥ o) + (D” @) (M) -
(111. &)

- {00t 0,0 -l o -] o o)

ITI. 2 - PROCA VECTOR FIELD ELECTRODYNAMICS

. u u+
The lagrangean for a free complex Proca vector field o ", ©

with mass m is :

1 Hvt 1 uv+ )
L= Z go gouv 7 g 0 (av @ au “’v)
(111. 5)

1 ,.v ut v+ 2  u+
-5 (3V @' - 3" ™) gow+m o o,

which gives the field equations

iy
3, ?0 sme gt =0 (111. 5a)
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with

Hv
go =V M- (II1. 5b)

We define the gauge-covariant field

ZAR QP T (111. 6)
where DY s given by equation (II. 9). This means that

¢ . ?zv +ie (AY " - A" @) (111. 6a)
The gauge invariant lagrangean is therefore :

uv+ Hv+
Loy, 3T LD 0,

TRV

- % (DV* QU+ - DM+ ¢v+) SE?;V + m2 ot 0, (111. 7)

+
from which we obtain, by varying SE?LV . Eg?;v the equation (III. 6), and
the equations of motion, by variation of @, w+u

n
D, R R U (111. 8)

The interaction lagrancean is :
. uv+ v
_ _ le N _ + _ +
by =7 { go (A, 0, = A 0)) - (A 0,7 - A o)) go }

_e vV out _ au vt _
- (A" ¢ AW ’T) (Au , Au wv) (II1. 9)

The current is :

M(x) =i { wa"(X) ?‘fg) - 5? ‘(li; wa(x)} (111. 10)
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Note that Proca's equation for a free field is equivalent to the couple of
equations

1
(=]

2
(o +m°) o (I11. 11)

n
o

3 H
u(ﬂ

In the presence of an electromagnetic field we deduce from equation (III. 8) by
application of the operator Du’ and from the commutator (II. 13a) :

[Du, Dv] =ie F (111. 12)

the supplementary condition :

: aB
u_ie
0, ¢ = 15 Fug 2 (1I1. 13)

which together with equation (III. 8) replaces the equations (III. 11).

ITI. 3 - SPINOR FIELD ELECTRODYNAMICS

The gauge-invariant lagrangean for a spinor ¢(x) with mass m
is :

N SF= 1Y 4o .p- )
Z. e s i{iv-n-m )y (II1. 14)
from which one deduces the field equations

(iy* Dy, -m)y=o,
- (I11. 15)

T0*, Py +m}=0
3, 'Y = e j¥,

M=oy
The energy-momentum tensor is obtained from equation (I. 35) with
the substitution of the derivatives 9* by the covariant derivatives D®, D*.
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III. 4 - SCALAR AND PROCA ELECTRODYNAMICS - ALTERNATIVE FORMULATIONS

Instead of the scalar field o(x) and its hermitian conjugate we
shall introduce two equivalent real fields wl(x), wz(x) by the equations :

® (x)- 71; (0, (x) + 1 05(x))

(III. 16)
o (x)= /iz (0, (x) - 1 0y(x)

Clearly the transformed fields by equations (II. 7) will be equivalently
expressed in terms of the fields wa(x) according to :

@'y = cos (e A) 9 - sin (e A) )
(I1I. 16a)
w'z = sin (e A) @) + cos (e A) 9,
that is :
©'y cos (e A) - sin (e A) ©
= (II1. 16b)
wé sin (e A) cos (e A) ®,
If we consider the matrix :
0 -i
T, = (111. 17)
. i 0

then the above equation may be writtenin compact form :
‘ie A TZ
$'(x) = e ¢(x) (111. 17a)
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where ( .
¢(x) = 1) s 6T(x) = (0(x)s 9y(x)) (I11. 17b)
wz(x)

and, by series development :
"ieATZ

e = cos (e A) - i(sin (e A))T, = sin (e A) cos (e A)

(cos (e h) -~ sin (eA)
, (111. 17¢)

+ .
The application of the covariant derivative to o(x), @ (x) will lead to

a¥ 9 - e AM ©,
DM ¢(x) = (3% - i e A¥ 1,) o(x) = (L j) (II1. 18)

oM w2 +eA¥ ®

H H M
(Dzu ¢(x))+ = au ¢+ + .i e Au ¢+(x) T2=(3u (pl - e A (D2, a ¢2+ e A tpl)

The gauge transformation :

¢'(x) = ;T ¢(x) (I1I. 18a)
AM(x) = A%(x) - % A(x)

will lead to _
(0 40x))" = 1 (0" #(x)) (I11. 18b)

ie A(x) T
(0'% 0'(x))* = (D, 6(x)) e 2
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The gauge-invariant lagrangean is now

Lo yeve, o0t 00 - e -

{

- 36t 9)? (111. 19)

Let us now consider the case of three Proca vector fields, two of
them being complex o"(x), w“+(x) and the third one being real, wa”(x), say.
We have then to consider the following transformations :

Hx) » el M) gy

FHx) e TeMX) gy (111. 20)

@'3(x) > Hy(x)

If we introduce two real fields w“l(x), m“z(x) :

PR = (@0 4 eyn)
‘) . (I11. 21)
@ = o @00 -1 @)

then we may consider the triplet
Lpul(x)
M (x) = o"5(x) (111. 21a)

u
¥ 3(X)
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which will transform in the following way :

w'?(x) cos (e A) -sin(eA)O wul(x)
oM(x) = [ ohx) | = | sin(en) cos(en)o *y(x)
©'3(x) 0 0o 1 o"3(x)

cos (e A) wul - sin (e A)touz

(I11. 21b)
= sin (e A) wul + cos (e A) wuz
0
@3
Therefore we may write :
- ie A(x) L
P x) = e 3 o (x) (ITI. 21c)
where
0 -i O
Ly = i 00
0
If then we define the covariant derivative :
D3y ¢%(x) = (3 - i e ¥ Ly) 6°(x)
(I1I. 22)

(D“(3)¢"(x))+ =¥ ¢Vt ie A VT Ly

then

, - ie AL
D ”(3) oY = e 3 D“(3) ¢V (111. 22a)
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The lagrangean for this triplet of Proca fields is then :

Loteve 1 @ 1 g
uv

7 (3) (B "3 3) O3y %™ Dyayy &) -
(111, 23)
2
_1 [ v TIC v +] m® o+
7 | (3) ) (0 (3) ° ) g(3)uv t 9
from which one deduces :
Hv
- pv U _ M v o
AR
a\) (pul - a]J w\’l - e(A\J (Duz - Au (D\)z) )
(111. 24
= v
z 3 “PZ - ¢ wvz + e(AY wpl .\ w“l
VoM - gd Vv
) 3~ 0 3
and the equations :
\
) Dot & -0 (111 24a)
These give the set of equations :
D, (0”@ - D" ¥) +m? @ = 0
\Y +
D *(DV* MF - oM %) 4 @t < g (I11. 24b)

for the fields (III. 20). The current in Maxwell's equations
HY _ L su
3, FF =e j
is now :

Y uv+

M= 5 e, 3" T3 Loy} (111. 25)
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PROBLEMS

. . u
ITI - 1. From Proca‘s equation for a free massive vector field ¢"(x)
Hv
2, & (x) +nf e"(x) = 0

uv
G e

it follows that :

so that :
(0+m?) ¥ =0

What are the corresponding equations when this field interacts with an elec-
tromagnetic field ?

HI - 2. From the lagrangean :
- A _ i Apvs Yot
+3h Y Gy ) vy

a) deduce the equations of motion for the interacting electromagnetic and
Rarita-Schwinger fields ; b) obtain the subsidiary conditions ; c) show that
the current is a power series in Fc‘8 (the corresponding theory is non-
renormalizable).

ITT - 3. Given a 2 x 2 unitary, antisymmetric matrix C such that :
t

-1

g = - C~oC

a) show that the basis in the space of 2 x 2 matrices can be chosen as formed
by C and three symmetric matrices ; b) express a symmetric two-component



- 120 -

Weyl spinor :
wag(x) = ¢Ba(x): a, B =1,2

in terms of a three-dimensional complex vector F(x) ; c) assuming that ¢,
satisfies Weyl's equation :

-3 (g . 3)(10-' lba-B =i aO lbas

. _ s
-i(o- _V>)BB| \baB- =1 30 waB
find the equation for F(x) ; d) show that F(x) can be expressed as a linear

combination of the electric field E(x) and the magnetic field B(x) so as
to give Maxwell's equations :

V.-t=03;V-8=0;
YxB-3 E=0;VxE+0 B=0
e) how does F(x) transform under spatial reflection ?

111 - 4. Develop the canonical quantization formalism for
a) a free scalar complex field
b) a free Dirac field

c) the free electromagnetic field in the Coulomb gauge.
(Consult refs. 13-23, particularly Bjorken and Drell, ref. 15)

IIT - 5. a) Establish the rules for Feynman diagrams in electrodynamics.
b) Indicate the calculation of cross-sections and decay probabilities.
(Consult refs. 13-23 and specially Bjorken and Drell, ref. 15, Chaps. 15-17 3

S.M. Bilenky, Introduction to Feynman diagrams, Pergamon Press, 1974, Chaps.
5-6).



CHAPTER IV
The Yang-Mills Gauge Fields
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IV. 1 - THE ISOSPIN CURRENT

Let us consider a set of two complex fields which forms a two-
component spinor

¥(x) = (Iv. 1)
¢2(x)

When this field is submitted to transformations of the SU(2) group in correspon-
dence to a rotation in three-dimensional x-space, this will be the Pauli spinor.

As is well-known, the Pauli-Schrédinger equation has a term, the interaction
between the spin magnetic moment and a magnetic field :

- = (5.8)

which must leave the equation invariant under the rotations :
Xk = %g Xp 0 By Apg T Sy
P (x') = S(a) y(x)
The invariance condition amounts to the equation
-1 ' ' [l '
TN BUx")) v (x') = (3.B(x) w(x)
that is
-1
S O ke Bz(x) S ¥(x) = Gy Bl ¥(x)
so that S must satisfy the relation :

-1 % ~ )
STy S=Eay &
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For an infinitesimal rotation :

+1n

e T Ske * ke

this equation is satisfied by
- C g 2K 1
S = I + 9 ak —2— ( v‘ 2)

where the parameters ay are (the rotation angles) given by :

1
%k =7 €ken Men

the antisymmetric tensor €xen being the structure constants of the SU(2)
group :

[Ok 02] . %m
7). %" fkem T
(Iv. 2a)
["k "2] !
7T 7] "7 Sk

A two-component Pauli spinor is therefore a pair of complex functions
(IV. 1) which transform according to the law :

in correspondence to the rotation of the space coordinates :
' -
Xk = Qg X
ke kn = Sen

21
%k = 7 €kn 3n
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We now consider spinors of the form (IV. 1) the components of which
describe two particles with (exactly or almost) the same mass and which may be
regarded as two different states of the same particle. This assumption implies
the introduction of a new degree of freedom described by matrices T, Which obey
the commutation rules (IV. 2a), the representation of the isospin generators
in two-dimensional space ; and that the transformation of ¢ under S is given
by (IV. 2) with o replaced by 1, the coordinates x being unchanged. The
components ¢1(X). ¥y(x) may be either scalars in which case we have a descrip-
tion of objects 1ike the K-meson :

K*(x)

K(x) =
K%(x)

(IV. 3)

or spinors in which case we may have objects like the two quarks u and d :

q(x) 1)
x) = ; IV. 3a
d(x) ( )
the proton and the neutron which form the nucleon field N(x) :
p(x)
N(x) = IV. 3b
n(x) (- )

the neutrino and its associated negatively charged lepton (with vanishing mass) :
vy (x)
2(x)

L(x) = (1V. 3c)



- 125 -

This notion of isospin was introduced by Heisenberg to describe the fact that :
a) proton and neutron have almost equal mass ; b) the forces between neutrons
and protons, electromagnetic forces excluded, do not depend on the charge of
these particles. The charge (which is the degree of freedom under consideration)
of the objects (IV. 3) and (IV. 3b) is given by :

Q=3 (1+13)e (IV. 3d)
For the quarks (IV. 3a) we have :

L=lla+y-L]e (IV. 3e)

2 Z 33 )
For the leptons (IV. 3c) :

Q =-5(1-13) e (IV. 3f)

The lagrangean for such fields will be invariant under a transformation of the
form (1v. 2)

T
VX = (1o ) w(x) (1v. 4)
in the case of infinitesimal transformations, or
ia-1t '
W (x) = e Z ) (IV. 4a)

for the finite case, if the masses of the two fields ¥1(x)s ¥p(x) are equal.
The x-coordinates are unchanged. Now the phase transformations (IV. 4), (IV. 4a)
generalize those given in equations (I. 19a), (I. 19). In the previous case, the
transformation group had one parameter only, A, and one generator, the identity,
the group U(1) . In the present case, the group, SU(2), has three parameters,
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>
o and three generators % . Therefore, the Noether current which corresponds
to the phase change (IV. 4) is :

% 2L
UNORRE R ORI
0 =1 {9700 3(a, ¥°7(x))

. (IV. 5)
) g Tk

a
a6, von 20 }

This is the so-called isospin current of the y-field. For the scalar components
case (sum over a = 1,2) :

= M .t _ 2 +
gamaauxpamw

a “a
we have for its isospinor current :
. . + T T
J“k(x) = i { ¢ (x) 25 M o(x) - ¥ o (x) 75 ©(x) } (Iv. 5a)
where
(Dl(x)
o(x) =
Wz(x)

For the spinor case :

§?=6ﬁva-mw

where ¢ is given by (IV. 1), then the isospinor current is

() = B(x) ¥ ;5 P(x) (Iv. 5b)
or @

¥ " W, 'k

J k(x) = ll!a(X) Y (=77 )aa’ Yat (x)

and so on.



- 127 -

Clearly, according to the relations given in (IV. 3d) to (IV. 3f),

the electromagnetic current is :

(1+ 15)
UNORRREAE 3L () -
1+ 15)
- M o'(x) f——;—fé- o(x) }= 3 (3M0x) + M500)

for the scalar isospinor such as in (IV. 3).

For the quarks (IV. 3a) the electromagnetic current is

P = a3 Gty et =

3 M0+ M0
where
H(x) = a(x) ¥ a(x)
#300 = 300 ¥ 2 a0
We must remember that the charges of the u and d-quarks are % e and
h % e respectively.
We note that, as a result of the invariance of the lagrangean :
L= L (w(x), 3"y (x), 97 (x)s 3 w7 (x)

under the group SU(2), equation (IV. 4), we have :

aL=3L 54 3L 5 (3% y) + hec.
W 2(a" ¥)
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hence, as

3L 7 3L T .1

33 7 + —_—— Y =

Y 23" ) (IV. 6)
- ¢+ % 9 L+ + ¥ ¢+ % oL

IV. 2 - THE YANG-MILLS ISOSPIN GAUGE-FIELD

We saw in § I1.2 that the electromagnetic gauge field was introduced
in order to have the postulate of invariance under the global phase transforma-
tion group (II. 5) generalized to the local phase transformation group (II. 6).

And in this way the conserved electromagnetic current is counled to the
electromagnetic field.

The idea introduced by Yang and Mills was to generalize this notion
to other conserved currents. Thus the isospin current being derived from the
invariance of the lagrangean under the global transformations (IV. 4a) the

problem arises to search for a lagrangean invariant under a local isospin
transformation of the form :

ig R(x) - ,i,
Pi(x) = e ¥(x) (Iv. 7)

where the three parameters A (x) now change from point to point. The constant

g is explicitly introduced by analogy with the charge e introduced in trans-
formations (II. 7).
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-

-
For an infinitesimal transformation (A (x) very small everywhere)
we have :

V()= (1+ig K(x)+ 5)¥(x) (1v. 7a)

) =TI - i gh(x) - X))

SR

As before, we see that the derivative of the field does not transform 1ike the
field itself, since :

My (x) = (I +4 gR(x) - fz ) y(x) + i g (¥ R(x)) « % w(x) (IV. 7b)

Therefore :

3,0 (x) = oMyt (x)(I - i g R(x) - g ) - igut(x)

N |~

<3k (x) (IV. 7¢)
]
We see that terms like

M o*(x) 3, w(x)
go over into :

i (p'+(x) au ©' (x) = ¥ (D+(x) au of{x) -ig w*(x)%auw(x)~3”w+(>()3g w(x)¢ auK(X)

Also terms 1ike

b(x) ™ 3, ¥(x)
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go over into :
P00 ™ o wt () = B TV 3, w(x) + g b(x) 7 wix) 3, K(x)

The changes in 9 and Fie Y are :

v =1ighk(x)- % v, svt=-1iguvi(x) % - f (%)
33" v) =ig{K (x)~-§ Py + MK (x) -3 w}
s(Mvf)y=-1ig {a“ v % R (x) + ot % <R (%) }

Therefore the change in the lagrangean

L=L(w, ¥y, o5, D) (V. 8)
5L 3L y
§L = 8 Y+ -S— - §(2 ¢) + h.c.
v (3" )
is
sL=-g3x) -2,k (x) (1v. 9)

account being taken of equations (IV. 5) and (IV. 6).

By analogy with the electrodynamical case (U(1) was there the
group of transformations now the group is SU(2)) we look for a new real vector
field, A", (x), which will change, together with the field ¥(x)(k =1, 2, 3):

-

ig K(x). 2
b+ v met T

(1v. 10)
Ax) A"'k(x)

is such a way as to have the change (IV. 9) cancelled.
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Equations (II. 10)suggest us to define a new, isospin covariant-

derivative :

D () = (0% ¢ i g BN - 1) wix)

(Iv. 11)
(0" p(x))* = ¥ p¥(x)-i gv' (x) 5 - B(x)
We impose it to satisfy the equation :
igx(x .3
D'H p'(x) = e )’z ! w(x) (Iv. 1la)

that is, DM y(x) must transform like y(x). We then obtain the following
transformation law for the gauge field A"k(x) for finite gauge transformations :

T T _
g A (x) + £ =U(x) Jg A - K-iak puT! (IV. 11b)

-3
igh(x) * 3 .
where U(x) = e and UU" =1 implies, as for the case of U(1)

transformations :

-1 -1
(3, U™ = - U3, U

In the case of infinitesimal transformations we have :
T + T Tk - . 7 :l"
gA'uk(x)o_z.ls=(l+'igA'%)(gAuk'—2‘-1au)(l-"gA.'Z)
If we therefore write

AM(x) = Mx) - ¥ R(x) + 2 (x) (Iv. 12)

S0 as to cancel the first and second terms of the second-hand side above we
get : :

ig[A,A“]-igA(auA)

n

were T 1.3 amg W
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The second term in the right-hand side is small for infinitesimal A
and 3" A everywhere so we obtain, in view of the commutation rules (IV. 2a) :

¥y (x) =9 e AML(X) A () (1V. 12a)

The vector field therefore transforms 1ike (equations (IV. 12),
(IV. 12a)) (to first order in g) :

A () = AP (x) = M A (x) - g egp Ap(x) A () (1V. 13)

IV. 3 - THE ISOSPIN GAUGE FIELD AS A MIXTURE OF AN ABELIAN GAUGE FIELD AND AN
ISOVECTOR

We may easily find the transformation law of an isovector induced
by the transformation (IV. 7), or (IV. 7a) of the isospinors.

Clearly, an isovector, which has three components, may be represented
by a second-order symmetric isospinor :

wab(x) = Wba(x)

which will transform like :

<> ->
VapX)=(I+ighez),.,, (I+ighk-3 g Yabt®)
Now an antisymmetric matrix C exists such that :
tc--c, cte=cct =1

Yool 2o

the symbol t at left means transposed matrix.
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. ->
For instance, in the usual Pauli representation of the matrices 71, C may
be taken as T,

Then, in the isospin space, we may take as a basis the matrices
-»> . .
T C which are symmetric :

tTey=7c

and the matrix C, which is antisynmetric. Therefore we can express wab in
this basis

TC Iv. 14
bap(0) = Fx) - (T )y (V. 14)
Now for the transformed functions one has :

P (5 )0 =

¢'a.b.(x)
¥a'a - Tb'b ) v (x) =
= (8t 9 i 7 ) By * 19 A7) ¥y,

. 1, .
Hx) (T ) e + 1 0K o 222 () - (5 ) +

>

28 00 - (B}

+

hence
vk T C .
Ml Oy = i (7 dawp
T T

. 2 m
* ‘9/‘1{(2— 7 Jata Cab Tm *

* (2— z )b'a Caa' fm }
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T
Multiply by C'lb.B and then by (EA)Ba' and sum over repeated indices to
get :

TszTj
r 7 7 )f

f'j=fj+21'gA2{Tr( m

17 T T
(0T C)Ba'(?—)sa' i }

so that from :

T T T: T T .
_ i 2 Tmoy _ i
7 7 Clga (g =Tr (3 7 7 ) =7 S

we Obtain
f'. = f - f . 15

T
The same law is deduced from the transformation of w+ 25 ]
under (IV. 10).

For finite transformations U, the law is :

Ts T
flod=urf Kk ¢l

(1v. 15a)
iz k 2 :

This is the transformation law for an isovector. We see that the

isospin gauge field is not an isovector, it behaves as a sum of an abelian gauge

field and an isovector field, according to equations ( IV. 12), (IV. 13), (IV. 15).

IV. 4 - LAGRANGEAN OF A YANG-MILLS ISOSPIN GAUGE FIELD IN INTERACTION WITH
MATTER

We see that given a lagrangean formed with an isospin field y(x) :

L=L (p, "¢, ¢*, o ¢")
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we obtain a gauge-invariant form for this lagrangean if we replace.the deriva-
tives by the operators defined in equations (IV. 11). What is the part corres-
ponding to the gauge-field AY (x) alone ?

In the electromagnetic case we introduced the field lagrangean :

L, = - 7 P(x) F o (X)

and the field F"Y was given by the commutator of the components of D, . We
shall extend this procedure here and define, by analogy with equation (III. 12):

T .
k woo i [u v] . 16
(- dap P =g L0504 (1V. 16)
where DY is given in equation (IV. 11) :
u u AT Tk
D aa' =3 6aa| + 1 g A k(x) ( '2— )aa'
We obtain :

PR 0x) = 0% A¥, (x) = 0% A, (%) + g egn A%y (X) AVp(X)
(IV. 16a)

that is :
FW oV M L gt RV 4 g [K“ x Kv]

It is the fact that the transformations (IV. 4) do not in general
comute (the group of transformations is then called non-abelian) because
of the matrices T,» that gives rise to the second-term, bilinear in the

field A, in the expression for Fuvk(x)'

We must see what is the transformation law of Fuvk(x) under the
group (IV.10). The electromagnetic field F"Y(x) is invariant under the
electromagnetic gauge transformation (II. 11) ; in the present case, A"k(x)
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transforms according to the law (IV. 13), how does F“"k(x) transforms itself ?

Let us define :

n,
= =3V'/‘\‘u-3uA\)+

A, T
Hv kK cuv
Fleg Py

T
k "] v
Y9 o egn Ay Ay
but :

Ty ~ Ty . [ Te Tn ]
7 SkemTC%mk TSVl 7T 0T

hence

]

F "V(x) a“X“-a”}“’-ig[x"’NA"]

Now, under the transformation (IV. 13) :

U (!
S A K=°-29 Ak +4 €am A 2 Am
so :
§ AH = - M X -ig [Ru s X ]
hence : o
n,
PV - SR - PR - ig [GA",’I\\‘\’] -ig[?\m’“‘]

In view of the Jacobi identity for three operators :

[[a,b],c]+ [[c,a],b] + [[b,c],a] =0

we obtain :

='ig[l\, (aV A" - oM ) ] -gz['l‘\',[ﬁ"’,'l\\"’]]
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whence :
" T
wv wvo_m
SF =g epn MNFy o
therefore
W uv
SF oy =-geqn A FY

So now F”“k(x) is not invariant under the isospin gauge group. It transforms
like :

[

Po% () = PV - g epgn Ay P

that is, F"“k is an isovector.

Yhat lagrangean term are we then to postulate for the gauge field
alone ? Let us try a term similar to the electrodynamical one :

- _ 1 v
<L - T % Fluk

Yang M

Tt wWill be acceptable only if it is gauge-invariant. This can be written :

N,
== 2 Tr (P F )

Yang w

since :

Tr (F

<

e
A

)

=

<
:"'I
<
-
o

—

-
~—
r\1 ~

=
|\1 ~
o
—_—

n
N —

-

=
<
=

-

uv,k

Therefore

s 1 v v oy n
%ang =-g Tr((s P F + P8 F))

So the term F““k F

uv,k 1S gauge invariant.
’
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We therefore take as the gauge-invariant lagrangean for an isospinor

matter field ¢ in interaction with the Yang-Mills field A“k(x) the following
one :

1
ZL- - 7 PV P * L v DM ut 0 o)) (1v. 17)
where
UV _ 2V Al P gV Y v
F k= 2 A K " A Kkt 9 En A 2 A n
T
My=(M+ig Auk . 2k ) v (Iv. 17a)

(D“w)*=a“w+-igw“A“k-;5
with the transformation laws (for infinitesimal transformations) :
; . Tk
' =(I+1ig Ay 5 )R]
e gt (I - g Ak;5 ) (Iv. 17b)

AH

U u
k= Ak - A - g, Ay A

F““; FHY

- v
k= 9 €ken Az F n

For finite gauge transformations :
T
. k
igAh
U=e k72
one has :
P'{x) = Uy(x) 3
I’J+l(x) = w""(x) U'l
T T .
' k — k 1 -1
A uk 7T = U(Auk 73 Bu) U

F 1

' Tk Tk -
wk 7 =Y Fuvk'Z' U
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The field equations are now like the equations (II. 15), (II. 15a?:.({1. 16),
(IT. 16a) having in mind the new lagrangean (IV. 17) and the definitions
(Iv. 17a) :

(TD“ _ELégfi_ j{ -2 = =0

o
20" 9 (Iv. 18)
Du ag - ag= 0
a(o¥ y)* ay
9 FDV (x) = - L_‘Zi~
v k ) %;k(x)
The current is :
g ju (X) = - i_:.gi_.
k 3 A, (x)
Now : B
3 F%2,
ag = ag a(D"w) +h.c.+%- a% A
) A“k(x) 3(D* y) 3 AY .9 FX, K
One obtains :
Moo= w+Tk 35/ - ag;w ;
‘ 7 a0 a0, W)
Hv Iv. 19)
eken F o Aun (

To the Current due to the y-field 1is added a term coming from the g?uge Yector
field ; this field has an isovector part and thus contributes to the isospin
current. The transfo}med of the current is

! ] Mol R {IV. 19a)
3 k(x) = Juk ~ 9 €ken ) A 3Tn q (3, Ag) 7y {

{
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We note that as a result of the equality :

T T T
2, (F gy = (Ot K ogu K

T
Y9ty Ay 0 29 (v

we have,in view of equations (IV. 18) :

Y "i3¢+ " 2 L0 o) % 2 L
7 oy a(0" y)*

+ Tn B,g _ag “n 'Jl)+
>

the. +ig o A, (w 7Ny a(oM w)

-V 1 cuv - =
ken 3 935 Antz FaleyAin 2, Av,n) % 0

+

The terms in €an cancel and so we are left with the relationship :

+ ¥ yoo-

> a0 y)

-yt .;E 3g - Myt Tk i =0 (Iv. 21)
3yt YO

which is the analogue of equation ( II. 16h), for the electromagnetic case, and
of equation (IV. 6) for the global isospin transformations.

The equation (IV. 21)isalsoa consequence of the invariance of the
lagrangean under the transformations (Iv. 17) :

a—-6-:.%:0
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We note that while the total current (IV. 19) does not transform
like an isovector, its matter part is an isovector :

U . v .
J k(x) = Juk(matter) * €n g 3 Av,n H

% 2. . (. 132)
+ s
7 - z v

+
:s(l)u V) ;;(Du ¥)

j“k(matter)= i ? ¥

.u' g .
37y (matter) = M, (matter) - e o A, 3, (matter)

IV. 5 - FIELD EQUATIONS AND NON-LINEARITY OF THE INTERACTION

The lagrangean and the field equations are given in equations (IV. 17)
and (IV. 18) with the current given in (IV. 19), (IV. 19a).

It is however convenient to express the equations for the gauge-field
in terms of the covariant derivative :

A (IV. 22)

Dy, =3, St 9y A

The gauge-field equations are then :

Dy ke ng = g ¥ (matter) (IV. 22a)

and the homogeneous equation :

B g (IV. 22b)

\V af (&) =
D F + D 2

VO
ke . ke T

o
g * Dk
which is the analogue of Maxwell's equation (II. 16b).

The equation (IV. 22b) can also be written in terms of the commutator
(1V. 16), namely through the Bianchi-identity

[Dv’ [ 0%, of ]]+ [DB, [ oY, Da]]+ [Da, [of, 0¥ ]]= 0 (V. 23)
since

- T
i o B8 gv1l - po Bv k )
g[D,[D,D]]—DkzevZ— (IV. 23a)
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From equation (IV. 22a) it is easily seen that the following
continuity equation holds :

D

ke jul(matter) =0 (1v. 23b)

The form of the tensor F“\’k as given in equation (IV. 17a) shows
that there is self-interaction of thre field A”k. In the absence of the matter
field y, the gauge-field equation is :

and the field acts back on itself as seen in the equation :

T\V
3 F k=~ 9 €ken A
The superposition principle is thus generally lost. This would be the case in

electrodynamics if photons were charged. These properties, non-covariance of the
gauge field and of the total source current, alternative forms for the gauge

Field equations, are also found in general relativity (Chapt. V).

IV. 6 - REMARKS ON THE COVARIANT DERIVATIVE

We note that the covariant derivative (IV. 22) which acts on an
isovector is deduced from that, (IV. 11), which acts on isospinors. The procedure
is similar to the one used in § IV. 3. Let us consider the equation (IV. 14)

and apply the following operator, similar to (IV. 11), to each one of the indices
of the second-rank spinor Yap(x) :

3 5., o+ 1k . Tk -
( u Saa Sppr +1 9 Au,k ('E- )aa‘ Sppr +i 9 Au,k ( Vi )bb' Gaa') Yayop = wu,ab

If we use the decomposition (IV. 14) we have :
(3, 8. .\ 8., +igh o ' i
u “aa' °bb' 9 ALk (7 Daar Sppr i g Auk (7 dppr 8aa0)

T,C
. 9 _ T.C
T (7 Do = Fun (2 )
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T
Multiply by (C’l)bu and by ( ?E )ag and take the trace to get :

f

F = (au § Lnm Au,m) n

u,e +ge

Ln

In fact the derivative (IV. 11) of isospinors and the derivative
(IV. 22) of isovectors are representations of the operator

au +ig Au,k Tk

where T, are the generators of the SU(2) gauge group. The representation of
the latter in the two-dimensional space is :

Tk
(Tk)aa' = z )aa'

In three-dimensional space it is :

(Tk)zn =T en =" T ok

IV. 7 - ENERGY-MOMENTUM TENSOR FOR A YANG-MILLS SYSTEM

The energy-momentum tensor for a matter field ¢ in interaction with
a Yang-Mills field is the following :

™ - LZ

m ¥y o+ (00 gyt =2 Z . L g™ (IV. 28)

3(D, ¥) a(d, )"

where the covariant derivatives are those defined in equation (IV. 11).
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In view of the identity (IV. 20) the divergence of TV is :

2, Tuvm=(D 1L > a.g

" D ¥y -
3(D, v)*

a(D vy M

-a_ga\’q,-___ag 3. D v+ h.c.
Iy

v i
2(0, ¥)

therefore, in view of the field equations (IV. 18) and of equations (IV. 11) and
(Iv. 21) :

] Tu\) ) - U Dv + D‘J N D
Woom a(Du ¥) [ ] i [ ] 3‘”” v’
that is, because of the definition (IV. 16) of F"",

o Tuvm =g Fuvk J,, k(matter) (1v. 24a)

The energy-momentum tensor of the field A¥

K is
THV  _ 3 ,537 v B
v oo VMY g Ty Y -
33,4, 1)
= - U B\J 1
P P ggg v (F*8 Fog i) (IV. 25)

(the index Y means that the quantity refers to a Yang-Mills field)
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from which we deduce, taking the following identity :

A(F 9k = (D, o Fo) 9 + TilD, ko %)

into account :

v _ u Bv
3, Ty =-(0, ke PO PV 9gp +
1 \V B 8 va o Bv
*?Fk,ae(nkzFan+Dk2Fz+Dk2F9.)

The field equations (IV. 22 a,b) lead thus to :

5 TV, = - g B (IV. 25a)

k g,k

The total energy-momentum tensor is conserved :

uv uv g
8u (T m + T Y) =0

IV. 8 - EXAMPLES OF YANG-MILLS ISOSPIN GAUGE SYSTEMS OF FIELDS

a) Interaction of a Dirac spinor isospinor field with a Yang-Mills
field :

L=- % F”Vk Fuv,k + P(x) ?i ¥ Da -m g P(x) (Iv. 26)
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The field equations are :

T

. . k

G ¥* Da -m) y(x) =0 , Da = aa +ig Aa,k Y
(IV. 26a)
T\V R | -
Dv;kz F g 913 k(m) > Dv;kl - Bv 6k1+ 9 €kon Av,n
with the matter current
T

: - k

Fem =9 V¥ = (IV. 26b)

b) Interaction of a real scalar isovector field with a Yang-Mills
field :

L = 1 FHv

1p¥ 2 2 2
= -7 PP Rt 7 (0% D 0 - o 9) - ile 9

The field equations are (l)“kz is given in (IV. 22)) :
1 2 A
Pue Duskn @n * M 9t g3 (0 0) 0 = 0
Dyske P =g % m

juk(m) = Ckan (Duna ©,) @0y

IV. 9 - THE GLOBAL SU(3) GROUP

The SU(2) group is the set of all unitary matrices with 2 x 2
complex elements :

) = (IV. 27)
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with determinant unity :

= + = Yo V. 27
det A, =1, At Ay = Ay A, I (1 a)

There are three independent real numbers to characterise the matrix A, so
the group SU(2) s defined by three parameters. A basis to represent such
matrices is formed by the identity and by the three Pauli matrices so that
in general

a,+ia, iaj+a
Ry=ay 1+43 .3 = [ 4 3 71772 (IV. 27b)
ia; - a, a, -ia3
with :
a24 + 32 2 (Iv. 27c)
We consider now the SU(3) group which is the set of all unitary
matrices with 3 x 3 complex elements
1 2 a3
37| a1 2 Ay
%31 33 333

such that :

n
—

+ _ + _
Ay Ay = Az At =1, det A

As the SU(2) matrices act on a two-component spinor, the SU(3)
matrices act on a three-component complex vector
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so that :

is the tranformed vector by A3.

As recalled in the Introduction, it is at present assumed that each
variety (flavour) of quark exists in three states with the same mass which are
distinguished by a new quantum number, the colour. Let us therefore consider

one quark flavour qc; it will be represented by a three dimensional complex
vector :

f
qf': qu ’ m1=m2=m3=m
93¢

and the space of these vectors transforms into itself by the colour group Su(3)-
Each component %y is a Dirac spinor.

A quark field is then represented by a Dirac spinor with two internal
indices, the flavour index f and the colour i :

9 = (9,,¢) » f=1, ... n (flavour)
=1,2,3 (colour) (Iv. 28)
a = 1,2,3,4 (Djrac spinor)

A global SU(3) transformation is of the form :
A
k

Q' (x) = e 7T q (x)

where the A's are the eight (3 x 3 matrices) generators of the group. The
exponential operator acts on the color index of q(x) so that, for an infini-

tesimal transformation we have, omitting the Dirac and flavor indices

A
9'a0) = (8ppr + i ()00 a ()



- 149 -

These generators have the following form :

0 0 0-i 0 100
M=l 1oo0), = i00), Ay 0-10

0 00 000 000

001 0 0 -i 00
Ao =000 ), A = 000 ), K = 001

1 00 i 00 010

000 100
o=loo-i ), xg= L (o010

/3
0 0 0 0-2 (IV. 28a)

There are two of these matrices which are diagonal, A; and Ags the SU(3)
1S @ rank-two group.

The following are the commutation rules satisfied by these matrices :

A A A
k 2 .
[ T -2-—]- = 1 szn .22 (IV. 29)
A A A
k [} ] _1 n
[‘2_"2—+'3'6k£+dk2,n2

They are similar to those in equations (IV. 2a) ; f,, .~ is totally antisym-

metric in the indices, deen s totally symmetric. They have the following
values :

= . - - - = - = 1 b4
123 7 15 fi47 = - fi56 = foag = Fos7 = faa5 =~ f3e7 =7

458 = T678 - (1v. 30)



- 150 -

= d = - d = —1—
dygg = 928 = 338 888 5
d d = d = d = - ._.]L_
sag = Yss8 668 778 273
dige = dyg7 = - 947 = dpmg = 344
) _ 1, .
= dygy = - dggg T dypy = 73Ty ) =20

the other f's and d's vanish.

Similarly to equation (IV. 5), one may write down the Noether current
for the global group :

RTINS ag_ag A

M =il q
. Z e,0f a9 2

IV. 10 - THE COLOUR GAUGE FIELD

We now postulate that the quark lagrangean must be invariant under
the local colour SU(3) group :

ig A (x) *
qQ'(x) = e Kz q(x)

where Ak(x) are eight functions which determine the transformations. In the
infinitesimal case :

A
Q'(x) = (I +1 g A(x) »£) a(x) (1v. 31)
The derivatives have therefore to be replaced by the covariant derivatives :
D - A
b alx) = (3, +1gA (x) »)a(x) (1v. 32)

where Au’k(x) are eight gauge fields.
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The requirement that these derivatives transform like the chromo-
spinor (IV. 31) :

A
. k
igA (x)
D a'(x)= e ¥ 2 D, alx) (IV. 32a)

determines the transformation law of the colour gauge fields :

A A
' k _ k - 3 -1 (IV. 33
9A TS UIA T 1aufu )
A
ig A (x)
the sum is over k=12, ... 8 and U=c¢e k z

In order to obtain the gauge field lagrangean we proceed as in § IV. 4. We
define the tensor :

A .
Hv k 21 ! v]
Fk(?_)ab"g' [D,D ab (Iv. 34)
and obtain :
LA U TP TR LI\ =
Fk-a A% -9 Ak+gfk2nA2An’ k=1, ... 8
With this term one then obtains the lagrangean :
45?9- - 1 FUV = : M D -
-7 k Fuv,k tq iy ML AL
or if we include all quark flavours =1, ...n:

__1 v n = ;U -
,CZ_ 7 g F + I qaf%”‘ (Oap =™ &b ¢ bf

Ll\),k f=1
. (IV. 35)
the Dirac spinor indices being omitted.
Th ‘- s ry . u\’
e infinitesimal transformation law of F K is
F'MV | iy uv
k=F ok =9 fign Ay P (1v. 36)

A
- - 7k
This is the Jaw of transformation of a chromo-vector, like that of Q@ » 4, to
first order in g.
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In the quantized form of the theory, one needs to add two other
terms, the gauge-fixing and the so-called Fadeev-Popov term or ghost term*.

The colour gauge field, or gluon field, is thus a set of eight mass-
less vector fields in interaction with themselves and with the quarks through

their colour degree of freedom 109-133)

The equations of this system, ignoring the Fadeev-Popov
terms, are of the form of those in the § IV. 5, namely :

W o
Dyske Fig =937 »

-0, (1v. 37)

where

is the current of the matter field only.

* id : 1 :
The gauge fixing term is - %a (au auk)z similar to the term (II. 22) in

electl.'od).mamlcs. However, contrary to the case in electrodynamics, no simple
restriction on the gauge functions A (x) similar to equation (IIL. 19b),

can be found in chromodynamics. Scalar and longitudinal gluons are only
cancelled if a second term is added of the form - 3‘_‘ wk+(x) i ®, (x) where

¥, (x) are eight scalar (ghost) fields quantized according to the Pauli
principle (therefore,

L with negative metric in Hilbert space) and
CONENC

ig fk!,n aun) (pz(x).
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PROBLEMS

IV -~ 1. Let the three 2 x 2 hermitian matrices Ty with complex etements,
such that :

[Tk Tz] I R
2z 7 - 7 °ke

T T T
B

Show that : a) Tr (Tk) =0
b) det (t,) = -1
¢) by choosing T3 diagonal and of the form Tg = (é _(1)) what

is the most general form for Ty and Ty ?

IV - 2. Let the eight 3 x 3 hermitian matrices A with complex elements,
such that :

A A A
k L ] _ 1 n
[‘2"‘2‘+"§6kz+dkzn z0
A, A A
[—2'5 —2&] =i fi 2 . ke f,n=12,...8,

where the totally symmetric coefficients dkzn and the totally antisymmetric

coefficients fren 2are given as follows :

dig6 = dyer = = dopy = dyrg = dagg = dage = = Gage = = Aoy = % 3
146 157 ~ 247 ~ V256 ~ “344 T “355 366 ° 377 "2 °

Ay 2 d o d e
118 = dppg = d33g = - dggg =

d

448 = dggg = dggg = dyzg =

f

1
[y
-

123 ©
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1

f1a7 5~ Tis6 = Toag = T257 = F3a5 =~ F367 =2 >
“ _ V3

fas8 = fo78 = 7

Show that : a) Tr (Ak) =0, k=12, ...8
b) T, (A, X)) =28, for k, 2=1,2,...8
c) det Ay = det Ay = det A3 =03

d) the matrices Al’ Az, A3 can have only the numbers 0, 1, - 1
as eigen values ;

e) if A3 is taken as diagonal and of the form :

100
A3 = 0-10

0 00
show that :

T, 0 0
() e (D)
0 0 2 0

0
100
Ag = j% 010 ) ;
0 0-2
o o o 0o 0o o0
A4 = 0 0 0 ' )‘6 = 0 0 la >
e’%0 0 0o eio
0 0 -ie'® 0 0 0
A= |0 0 0 s A= 0 0 -ie®
ie%0 o 0 ieieg
where o

is an arbitrary phase factor usually assumed zero.
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IV - 3. Derive the transformation law for the vector gauge field Aua(x)
(IV. 11b).

IV - 4, Given the 2 x 2 antisymmetric unitary matrix C such that :

and the transformation operator
U(x) = exp (ig A(x) --%)

deduce the transformation law for an isovector ?(x) :
f'k(x) = A, fl(x)

a) Find 8, 1n terms of U(x) and the T matrices.

b) What is the form of a, for infinitesimal transformations ?

IV -5, an isospin spinor-vector can be defined as :
TC
Vabex) = F00 - (5
c

3 by ¢ = 1,2, yhere Yape IS totally symmetric in its indices.

a) Which conditions on ?a reduce its six components to four independent
components (corresponding to isospin %) ?

b) What are the finite and the infinitesimal transformation laws of ?a ?

IV - 6. Show that if the field

FHV 2 gV g _ ol v MoV
k=AY - A g, A A

vanishes in a1 space-time, the potential Aua can be expressed as

u
Aa=auAa+g€

u
—abc Ab A c

and therefore can be transformed away by a gauge transformation.
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IV - 7. From Dirac's equation for a spinor field y(x) 1in interaction with
a Yang-Mills field deduce the second order equation for



CHAPTER V

The Gravitational Gauge Field
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V. 1 - INTRODUCTION

The relativistic theory of gravitation was, after Maxwell's theory
of the electromagnetic field, the second historical example of a gauge field
theory. It was the achievement of Einstein's efforts, between the years 1905 and
1915, to generalize his special theory of relativity and answer the following
question : should the independence of the physical laws of the state of motion
of laboratories be restricted to uniform translations of laboratories relative
to each other ? By taking into account the old empirical fact that the inertial
mass of a body is equal to its gravitational mass, and by assuming that the
physical laws ought to be independent of any state of motion of the laboratory,
Einstein discovered the principle of equivalence and was led to postulate that
the gravitational field is described by the metric tensor guv(x) which determines
the Riemannian geometry of space time. Thus the general theory of relativity
which he looked for turned out to be the relativistic theory of gravitation. The
geometry of space-time supplies us with the objects, the Riemann tensor and
its contracted forms , necessary for the generalization of Poisson's equation.
Einstein's gravitational field equations relates these objects to the energy-
momentum tensor of all the other fields and therefore unifies the geometry of

space-time and gravitational dynamics.
In this Chapter, we shall briefly review the foundations 173-177)

of this theory by following a method similar to that of the previous chapters.

V. 2 - GROUPS OF LOCAL TRANSFORMATIONS AND COVARIANT DERIVATIVES

The need of covariant derivatives in theories involving local
groups of transformations follows from the fact that field functions taken
at different points of space-time do not form a linear space under such
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transformations. Thus a given element U(x) of such a group, which trans-
forms a field y(x) at each point of space-time :

v(x) =+ @'(x) = U(x) ¢(x) (v. 1)

does not transform a linear combination of fields at different points into the
Tinear combination of the transformed fields :

@ ¥(x) + Buly) » a U(x) w(x)+ 8 U(y) oly) #

£ U(x) %a P(x) + 8 o(y) (v. 2)

Only locally, for fields at the same point, the linear superposition holds :

@ P(x) + B @(x) + a U(x) ¥(x) + B U{x) o(y) =
(V. 3)

= U(x) %a P(x) + B o(y)

Therefore, as the derivative involves the comparison of values of

the field at different neighbouring points, the ordinary derivative is not
Covariant,

The introduction of a covariant derivative results then from the
notion of Parallel displacement of the field. As we want to avoid the sum of
fields at different points we note that we can define another kind of derivative
if we substract the parallel §(x + dx) to the field y(x) from y(x + dx).

Under globa) transformations, this is what we do for obtaining the ordinary
derivative. Tpe Parallel to y(x) at the point x + dx coincideswith (transforms
Tke) v(x) (fig. 1). To obtain the parallel, in geometric language we simply
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B(x + dx) = y(x)

Z———"’ P(x + dx)

v(x 7 x + dx

@(x + dx) 0

Figure 1 \
consider the vectors y(x) and @(x + dx) which make respectively the same angle
with a given line such as the one which connects the points x, x + dx.

Now under a local group the parallel §(x + dx) will be different from
(transforms differently from) P(x), so we set :

P(x + dx) = y(x) - i g A, a(x) T, w(x) dx¥ (v. 4)
where the T, are the generators of the infinitesimal transformation U(x)
Ux) =T +1ig A, (x) T, (sum over a) (V. 5)

The field A,,a(x) appears as an affine connection similar to the one in
Riemanian geometry.

As §(x + dx) transforms 1like w(x + dx), the covariant derivative
is then defined by subtraction between P(x + dx) and P{x + dx) :

. u
D, ¥(x) + dx

P(x + dx) - P(x + dx) =
(v. 6)

v +igh (X)) T, 0 dx¥
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In the preceding chapters, we had

Ta
Ta =7 a=12,3

for the SU(2) group,

A

_a
Ta= 7 a

n
[
M
©

for the SU(3) group and

for the electromagnetic U(1) group.
The covariant derivative is so chosen that it transforms Tike
D', ¥ (x) = U(x) D, ¥(x) (v-

which entails for Au a(x) the transformation law :
»

. . -1 y ol
A Ta=UA T U + 5 (3, WU

ya
or : LT
' - -9 T pAp+g U 3, U
Alia Ta= AaTa-19h., [ Tar T ] b g "
(V.
for infinitesimal transformations (V. 5).
If
T = i )
[ a Tb] = Cape Te ,
are the commutation rules of the generators, then
A' = - -
u,a Ap,a au Aa 9 cabc Ab AN»C
The vectors under this group will transform like
+ + +
VT T e 9 G Ay ¥ TV -

under transformations (V. 5), V. 8a).

' If the transformations U(x) form a group with n parameters,
group will have n generators and there will be n gauge fields,

GFT - L

¥(x)

7)

8)

8a)

8b)

this
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V. 3 - COVARIANT DERIVATIVES OF TENSORS IN GENERAL RELATIVITY :
THE GRAVITATIONAL GAUGE FIELD

In general relativity the principle of general covariance requires

the physical equations to be invariant under general transformations of the
coordinates :

x.u = fU(x) (V- 9)

where the functions f* are four independent real functions of xV, that is,
their Jacobian does not vanish

J = | ax'¥ £ 0 (V. 9a)
axV

so that equation (V. 9) can be inverted.

The differentials dx'" and dxV are related by the equation :

dx'u = a_f:: dx\’ (V. 10)
ax

A contravariant vector is then defined as a set of four functions
which transform like the differentials above :

Py = 2 puy

S (v. 11)
9X

and a covariant vector 55? (x) by the condition of invariance of the scalar
u
product with any contravariant vector :

) G o = 22 PG )
39X
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This requires that :

Cx =22 Dy

9x

or

G- Gy, (v. 12)

ax-u

The metric, as is well known, is nowa (symmetric in its indices) function of
point in space-time 9,,(x) and the line element is :

2 _ BV V. 13
ds€ = g (x) dx* dx ( )

A tensor of order m + n, m times contravariant and n times
covariant transforms then 1ike :

: Op +-- Oy axel axBn
QAN g (x)
. By

10 TR TR
Vi --- v (x') = Y1
n 2 o ax' ax

lvn
(V. 14)

\Y
To the metric tensor is associated the co-factor of g, (x), A" (x), such that
the quantity .

1AV
#x) = A, g= det (90) (V. 14a)

is a symmetric contravariant tensor and satisfies the relation at each point x :

IV gyp(x) = 64 (v. 15)

Clearly, as in equation (V. 2), the vectors in this space form a
linear space orly locally :

a Fx) + b Cf“(x) +Z_X\')f[a FY(x) + b ?v(X)] (V. 16)
X
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this superposition does not hold for vectors at different points of space-time.
One then needs to define the parallel displacement of a vector by an equation
similar to (V. 4), and we shall write

Fé(x + dx) = F{x) - 1% () dx* FY(x) (v. 17)
The covariant derivative of a vector will then be :

7, F(x) dx* = F(x + dx) - F¥(x + dx)
so that :

v, FAx) = 3, F¥(x) + 1% (x) FU(x) (V. 18)

The quantities 1% (x) the affine connection, or Christoffel symbols, are

the gravitational gauge fields. The requirement that (V. 18) transform like
a tensor

V 1a
X

determines the transformation law for Pauv(x) :

o £ n

1‘"0' "y - ax' A X 9X
wx) L R TP
(V. 20)

axE ax" azx'“

ax'M oax'V axE ax"

Like all gauge fields seen previously, this is also not covariant,
it does not transform 1ike a tensor.
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To obtain the covariant derivative of tensors we remark the following
identity :

3, (F3(x) Fi(x)) = (v, F%) F, + FX(v F)
if the covariant derivative of a covariant vector is
_ _ Vv v. 21
VFy= 8 Fy- TN Ry (V. 21)
Now we may write
By _ B B _ B v _ o v B
QUFY F) = F g FP e (v FO) PP -1F (FOF - FUF
Therefore the covariant derivative of a tensor of the second rank is :
B _ B o VB B av .
VuT“~3uT°‘ +D T T (V. 22)

In general, we have, for a tensor of any rank :

g ... _ B ... a AB ... ] Ao
Vn Tﬁv---—an Tgv...+ rnl Tuv...+rn7\ 1‘:\)

PO 1-.}\ T(!B vee r)‘ TaB ::. - 1 (V. 23)

The affine connection is symmetric in its lower indices :

L ] . 24
s 1% (v. 24)

In fact if one defines the quantity

a
3 1Y ; = % gak(au G t 3y 9w~ % guv) (v. 25)
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jts transformation law to a new system of coordinates (V. 9) will be :
a)t | wx® ; Al ot "
BV axx Eny  axtM etV

axE ax" azx’a
ax'¥ ax*Y ax® axn

that is, this is the same law as (V. 20). Therefore the difference between
r¢ and (V. 25) will be a tensor :

uv
pe Yol ax'® [FA 3 A ax® ax"
uv uv axA En En ax'H ax'“

Now according to the equivalence principle there exists in every point of
space-time a locally inertial system of coordinates in which the effects of
gravitation are transformed away, hence r“uv vanishes in such a system, Vu
is auand the first derivatives of 9 vanish. Therefore, as the difference
above is a tensor it will vanish everywhere and so :

aA

o
T 93, Gy * 3, Gy " 3 9y (V. 25a)

[\

1l
P T
Ee
——
"

-

and

a  _ Lo
s (V. 25b)

Thus guv(x) is the gravitation potential in terms of which the
gauge field is expressed.
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V.4 - THE LAGRANGEAN OF MATTER TENSOR FIELDS .IN INTERACTION WITH THE GRAVITA-
TIONAL FIELD

In order to find this lagrangean we have first to look for the part
of it which corresponds to the gravitational field alone. For this we follow
the same procedure as that we used for the Yang-Mills and for the electroma-
gnetic fields. We calculate the commutator hetween the covariant derivatives
applied to a vector and define the tensorLEZ? Aauv(x) by the equation :

A

Ty B ) = [%: %] Ful® (V. 26)

We obtain

A
K4 =3 1 -aur" PO LT TS LI (V. 26a)

this is a fourth-rank tensor, the so-called Riemann curvature tensor which
satisfies the following relations :

A

A A
@a\)u"'@uav*'@ vua =0
and if

A
@&wu = gsx‘@

then

Bavu B afvy

by = @&M (V. 26b)

Bavu = vuBa
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These equations reduce the number of components of this tensor from
256 to only 20 independent components.

What is the invariant space-time volume element over which we must
integrate the lagrangean to get the action in relativistic theory of gravitation ?

As the metric tensor transforms like :

3Xa BXB

g (x') = &
H ax'M ax'V

9yg (X)

we have for the determinant of gaB the following transformation law :

2
g': aL g
ax'
where
g = det 998

therefore, according to (V. 9a) :
g=0%g

As
d4x' =4 d4X

we see that

g dh = -g' dtxe

Wi
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is the required invariant volume (the - sign is for the limiting case of
a flat space where

- 0 -1 0 0 _
e = , det Nog = 1
0 0 -1 0
0 0 0 -1

To obtain the action for a vector field F®(x) in interaction with
the gravitational field we first replace the ordinary derivatives of F“(x)
by the covariant derivatives, in the free field lagrangean for F® :

L(F*(x), 3, F(x)) > L(F*(x), ¥, F*(x)) (V. 26¢)

Then we form the scalar curvature ._@ from the Riemann tensor, that is :

. 27
\ (v. 27)

A
u@uv = @ Lo 6("

and
R B . " (V. 27a)
uv u
The action is then

S = fﬁ d* (@"’ L(F%, vu %)) (V. 28)
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v. 5 - EINSTEIN'S EQUATIONS OF THE GRAVITATIONAL FIELD

To obtain the gravitational field equations from a variation princi-
ple with the action (V. 28) it is usual to write the coupling constant

_ 8
-8 Y
c
where Sg? is the gravitational constant, in an explicit form in (V. 27) :

S=JF§d4X(@'2KL)=Sg+SF (v. 28a)

The variation principle assumes

§S=0 (V. 28b)

for arbitrary variations & g"V, & 3® o"V which vanish at the boundary of space-
time.

We have :

GSg=Id4x 3/’-39‘“’6@‘”4- %vﬁgsg”" +

* “g?uv ¢ s (ﬁi)e (V. 29)

Now in a locally inertial coordinate system, the affine connections vanish so
that  (see (V. 26a)) :

s H - Ay A
w = 83 T7) 8(3, %y,)
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In this system the ordinary derivatives coincide with the covariant derivatives
S0

) A A
5 @W =7, (8T ) - 9,(6 TY)

and this relationship is general since both sides of this equation are tensors.

- The first integral on the right-hand side of (V. 29) may be written :

Iy
[ax 5o s P, -

= [ d /5 3\7)‘(9”\) 8 r"w) - v,(g" r"}‘u)g (V. 30)

This is so because the covariant derivative of g"V vanishes
VA g‘-l\) = 0

since it vanishes in a locally inertial coordinate system at any point. Now

A .
6T uv 1S a tensor hence one can write :

HV A Hv A _ A \Y
vy (g §T0) =0V s ) =7 A -V, B

A
where A" and B are two vectors.
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The divergence of a vector is :
Ao A ) A = L
v, A" =3, A" + (3, log /-g) A 3

since

A - -
r S au log v-g

Therefore (V. 30) can be transformed away :

[a* 596 R,

f d¥x 3 3,(/79 Ay - 3,(/73 8Y) z =

"do (AV -8Y) /g =0

v
boundary

This integral vanishes because & g"¥ and § quv vanish at the boundary.

The third term on the right-hand side of equation (V. 29) 1is :

4 uv ~ _ [ 48, = -1 s g*¥
Idx@uvg 6(/‘9)—[dx/’§( 2911\,.@) 9

since from (V. 14a) one deduces :
a B
- (]
g g gaos A

(which is the development of g according to the element of a line ay) and :

(v. 31)
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so that :

Q

/=g
3 ¥V

wo_

1 1
8(+/~9) 7=

§g
=

tD
Q
(=]

1
-3 7949, 69"

Collecting the terms of & Sg we thus have :

_ 4 - ! uv
85 = [ % T (P - 390, P s 9
Let us calculate & SF' One has :

dod’x/-_g'L=Id4x'(L6/-_g+ 5 6 L)

Now
Id4x/-_g<s L=Jd4x/-_g zu—agw+3_|-___.v_.5(a°‘g‘“’) g =
2 g*v (3% ¢"Y)
4 9L 1 .o 9 L HV
= dx/ﬁg -——a(/-*g————)gﬁg
I 2 g™ /g 3(a% ¢"V)
Therefore

o[t L[ oo AR (A L g

ﬁ-'g'ag
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The energy-momentum tensor of the matter field is defined by

2 YL a (a/‘-g'L E
T =L -9 V. 32
w /-‘g'g a g* a(a® “")) ( )
so that
4 )
I x»’ L ?Idx /=g Tvdg (v. 32a)

According to equations (V. 28a), (V. 28b) one will then have :

= - HY .
6S I x/"'g ~ ?guv@ KTu\)fﬁg =0 (v. 33)

which entails, for arbitrary variations & g"V (vanishing at the boundary) :
1
@W -3 K. . T, (V. 34)

which are Einstein's equations for the gravitational field.

From the equations (V. 26),(V. 27) we see that Einstein's equationsaré
linear in the second-order derivativesof the metric field g, (x) but non-1inear in
v and its first derivatives. The non-linearity character of Einstein's
equations (see equation (V. 26a), notably the bilinear terms in T) results
from the self-interaction of the gravitational field : the energy-momentum
tensor is the source of the gravitational field ; as the latter clearly carries
energy and momentum it contributes to its own source just as a colour or an

isospin gauge field having colour or isospin contributes to its source, the
current.



- 175 -

V. 6 - THE ENERGY-MOMENTUM OF THE GRAVITATIONAL FIELD

The equations (V. 34) correspond to the equations (IV. 2§a) for the
Yang-Mills field : in both, the right-hand side contains only the part of
the source due to matter : the matter energy-momentum tensor in (V. 34) and
the matter current-vector in (IV. 22a). And in the same way that the latter is
covariantly conserved, equation (IV. 23b), so is the matter energy-momentum
tensor :

v, ™(x) = 0 (V. 34a)

(Note that the covariant conservation of the matter sources contain terms
coming from the field interaction).

This equation is in accord with Einstein's equation (V. 34) and its
imposition was a guide for the search for a tensor :

1
6 =B, -39, F (V. 35)

with vanishing covariant divergence :

v, 68" =0 (V. 35a)

To show that equations (V. 35), (V. 35a) are indeed satisfied, we
consider the expressions (V. 26) of the curvature tensor and take its derivative :
A
,é%? = A A n A
vB anv = VB au Moy = 3, T an ; + (vB T av) T - +
o)

n A _ n A _ .
* oy (VB r nu) (VB r au) T nv T au (VB T nv
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Now in a locally inertial frame, the affine connection rx
and so we have

A
(VB@ ) =2, 8 I -3 A

= 2., T
®V'oc. inert. frame £ W @V B v an

vanishes
aB

In this frame therefore the following relationship holds :

o\ A A
VB@ auv + V\,‘_@ aBu + Vﬁ avB 0

which are the Bianchi identities (see equations (IV. 23), (IV. 23a) for the
case of the Yang-Mills field) As the left-hand side is a tensor, this equation
remains true in whatever system of reference.

The contraction of the indices A and u gives (see (V. 26a) and
(V. 27)) :

u
Ve "@av-vv “@aB'PVuQ av8=0

and a new contraction :

o H
VB@'V‘;% B-VU%B =0

(V. 36)

The latter equation results from the fact that

™ Vg Py = Y (B )



- 177 -

since the covariant derivative of the covariant and contravariant metric
tensors is zero :

- A by -
Vg 9y = 36 9av " Tga Bav ~ Tgy Iar = 0

Vg v 3 ™+ ruex ng + Fvsx gax =0 (v. 37)

This equation expresses the fact that in a locally inertial frame this
covariant derivative vanishes and so it vanishes always since it is a tensor.

Therefore, from (V. 36) we get :
a
-1l = V. 37a
W H -t e R =0 (v. 372)

which proves (v. 35), (v. 35a).

Now we should 1ike to show that Eistein's equations can be written in
a form in which the energy-momentum of the gravitational field is exhibited
and added to the matter energy-momentum. The equations we shall obtain correspond
therefore to the equation of theYang-Mills field (IV. 18) namely :

3, P = 3%, (total)

where the current above is the total current given by (IV. 19).

For this purpose we write for the metric tensor :

Gu(X) = nyy + h(x) (v. 38)

V]

where h ,(x) vanishes at infinity so that far away from matter the metric

tends there to the flat-space metric LS

GFT - m
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As the curvature tensor is, according to (V. 26a), (V. 25a) :
F. .11y +3.9 -2 3 -aagl+
Aapv ~ 2 o %y Dv v %% Yop v % N A Cu Fav |
8 € _ B £
+9853rlvruu r)\ura\:$
the substitution (V. 38) will give :

9 .1 ) !
Aavp 2 gaa au by * 3, 3 hau'av 3 M = 3 2y Pov y *

€ _ B €
+nBe§rAvrau rkurav +
(V. 39)

We separate the terms in @a\: which are linear in hw :
SO
- A X AL
@ av z%aaaxhv+av3)‘ha i)\)amhX
- 3 aA h ? (v 39a)
A a\)‘ )
from the other terms in "@w and gw@ » and we call these :
.1l 1 gp. g 1 g(l)f
to S E; aw ~ 2 Yov - av T Z Nav .
(v. 40)

(the indices in h  , @(l)w and 3, are raised and lowered with v,

the indices on the full @ o 2re of course raised and lowered with 90)
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Einstein's equations (V. 34) assume therefore the form :

(1) (1) .
24 av ~ % Nav X - “(Toy + ty) (v. 41)

where

(1) (1)
@ = naB g@ aB

These are important because they exhibit the form of an equation for
a spin 2 field generated by a source which contains a part arising from the
field itself (see equation (I. 8)) :

_ A A A -
o hav 3a BA h v 3, ax h ot aa av h z
- A Ae _
Ny @ D 2t New 3 % = = (v. 42)
= -k (Tav + tav)

The interpretation of this equation is this : the quantity

Tav = Tav * i (v. 43)
is the total energy-momentum “tensor" of matter and gravitation, t , is the part
corresponding to the gravitational field. The term tensor is under quotation
because t,w does not transform like a tensor under general coordinate
transformations. This is, however, similar to the case in the Yang-Mills
field theory. In the equation (IV. 18), the right-hand side does not transform
like an isovector (or a chromovector) but it is composed of the matter current
which is an isovector and a field current which is not an isovector 3 thus
the total current "vector", as well as the Yang-Mills vector field Auk have
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the transformation laws given in equations (IV. 19a) and (IV. 13) and the terms
in ¥ Aa are the ones which make them not to have an isovector character. Here

both the gauge field rauv and the source are also not generally covariant.
From (V. 42) it follows that

3, ™ =0 (V. 43a)
and so the total energy-momentum is conserved in the usual sense. Thus :

pA - I a3y 0 (V. 43b)

is the conserved total energy-momentum “vector" of the system matter and gravita-
tion. P, in particular, is always positive and is zero only for empty space.

As Tav is symmetric the angular momentum tensor density

VA o A Vo A (V. 43c)

is conserved : 3a Mavx = 0, and

Vo I a3 HOVA (V. 43d)

is the total angular momentum of this system.

Although not covariant under the general coordinate transformation

group, Tov? tav and PX, Mavk’ J“X are covariant under the Lorentz group.

Thus despite such non-covariance, these quantities are conservedi
Lorentz-covariant and also, as it can be shown, additive. In particular, P
Plays the réle of the usual momentum vector in collisions between systems which
come from infinity and go to infinity after interaction.
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V. 7 - GRAVITATIONAL INTERACTION WITH AN ELECTROMAGNETIC FIELD

This is the simplest example of the interaction of a tensor field
with gravitation.

Maxwell's equations for an electromagnetic field in the presence of
gravity are, according to the prescription given in (V. 26¢c) :

FaolX) = 2 A (x) - 9, A(x) = 3, A(x) -3, A(x)

v, FV(x) = M(x) (V. 44)

The lagrangean L in equation (V. 28a) is, 1in this case

L=-3F o g¢®F,

- (V. 44a)

B

and the reader will then find that the energy-momentum tensor given by (V. 32)
to be inserted in equation (V. 34) is :

o8 (V. 44b)

=1 AE on _
Ty = 7Fe9 9 Fen v Fuu 9 VB

HV Aa

and is such that :

uv _
¢ T, =0
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V. 8- THE TETRAD FORMALISM

In order to consider spinors in general relativity it is convenient to
introduce the notion of tetrad or "vierbein".

The 1ine element at a point M is

where dx* s a vector between the point M and a point in its neighbourhcod.
According to the principle of equivalence, we may choose at every point M of
space-time a locally inertial system of reference, where gravity is locally

transformed away (freely falling frame) and in this system the line element has
a Minkowskian structure :

2 _ a b
ds® = Nap dg” dg

where de? s a vector between the point M and a point in its neighbourhood
in this system.

If we call :

a
VA x) = (ag X’-) (v. 45)
M S x = x(M)
we then have
a b
Guolx) = v (x) v (x) nyy (V. 45a)
Here
1 0 o0 o0
0 -1 o0
Nab 0
0 0 -1 o0
0 0 o0 -1
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is the flat-space metric and the latin indices a,b, ... run from 0 to 3
but refer to coordinates in a freely falling reference frame.

In the latter frame :

dzga o
ds2
so that
a H
gg agu ax =0
3 X s
gives
dzxx A dx"  dx" -0
dSE uwv ds  ds_
where
Py - 2xt el
(1Y) aga ax* axV

If 9,u(x) and Pkuv(x) are known at a point M in an arbitrary coordinate
system xM, the locally inertial coordinates £?(x) in a neighbourhood of M
can be determined. Indeed the above relation gives the equation :

. ag? i aZEa
¢ ai“ axH axV
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the solution of which is :

00 = @+ oF - ) 4

1 A
+?V r

2 D (x* - x¥(M))(x¥ - xV(M)) + ...

with :

ca=€a(M) , va - laga‘
x = x(M)

R 2 a
Yhen we change the non-inertial frame x" to x'M the coefficients v u(x)
will change as follows :

a a v
v (x) » v'@ (x') = 2& - 9§ 3x
H M ax' ¥ axY ax'M
Vv
=2 X (V. 86)
Vo oax'¥

so these quantities may be regarded as a set of four covariant vector fields, not
as a single tensor. If a change is made from the chosen locally inertial frame

to another one at the same point M, vau(x) will change by a Lorentz trans-
formation

Vau(x) +<zi_.ua (X)) = Qab(x) Vbu(x) (V. 463)
x = x(M)

the Lorentz coefficients 2ab are then a function of the point M.
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The functions vau(x) constitute the tetrad or "vierbein".

Uy Mo ee
Given a space-time tensor T 172 (x) we can ‘ctonstruct with

SRTIRES
it a quantity which will be a scalar under general coordinate transformations and
a tensor under the local Lorentz group at x :

Hy Uy ... Ay @5 ... a a
172

LIS ox) - Tb1 b2 (x) = v 1 v 2 .
1% - 1 by - ny Uy .-

Hy Mg .- M A,
TA N vb Vp vee
1% - b 2

The latin indices a,b, ... are raised by means of nab and the
greek indices by ¢V .
Ay a
1 _ n 171 1 (V. 47a)

9 v
14 Hy

The invariance principle is now stated as follows : 1) the action must
be invariant under the group of general coordinate transformations and the fields
are represented by entities which are scalar under this group ; 2) the action
Mist also be invariant ifat each point of space-time we change the locally inertial
frame of reference by the Lorentz group of transformations.

Thus the physical fields will be scalars or tensors under the general
group of coordinate transformations and scalars or tensors or spinors under the
local Lorentz group. A Dirac spinor, in particular transforms like

P(x) > p'(x') = p(x) if x> x"M = f(x) (V. 48)
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and
b(x) + w'(x') = S(&(x)) v(x)

if the inertial frame at x 1is changed by laB(x).

Let us consider the action (V. 28). It can be written :

A

[ W a b
S = [ d*x v(x) 3 R, gy 2L % (V. 49)
where, according to (V. 45a) :

v(x) = det (v!)) = /g

s oL a
The variation of S corresponding to a variation & vau of v u(x)’
which now describes the gravitational field, will be :

65=2fd4xv(x)3;‘9?w Vau“ab'% @vb\’ -

- v b
k Tp g s v, (V. 49a)

and vanishes for arbritary & vbv (which are null at the outer surface). One
then obtains Einstein's equations :

@b\)-% -.@Vv:"(-rb\’ (v. 50)

b
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where
v uv
92? _ a
b ‘@ VU nab
and
TPl Vvl g fa(vL ) % (V. 51)
a v ( 5 o a(au va )
U H
In the case of the electromagnetic field one finds
a _ 1 Ao VB a _ a ab vB
Tu_WFA\)g 9 Fanu Fuvvb no9 FaB
so that :
-} b _
Tuv = Vu Mab T v o
_ aB 1 ea _AB
=T Fua 9 FuB *7Fa9 9 FuB )

Té therefore gives rise to the electromagnatic field tensor (V. 44b).

V. 9 - DIRAC'S EQUATION AND CURRENT IN GENERAL RELATIVITY

Let us now consider a spinor (x), that is, a field the transforma-
tion laws of which are those in (V. 48).
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Its covariant derivative will be defined by the introduction of four
4 x 4 matrices I‘u(x), functions of point, the spinor affine connection :

Y, ¥(x) = (3, + T (x)) ¥(x) (V. 52)

The Lorentz-vector and coordinate-scalar derivative operator will be :

7, b(x) = v,'(x) v, ¥(x) ; a=0,1,2,3 (V. 52a)

If at each point x, y(x) transforms according to the spinor repre-

sentation of the Lorentz group, in correspondence to changes in the locally
inertial frame :

VHx) =S (2(x)) w(x)

then the condition of covariant transformation of the derivative gives :

Vla‘l(a'p + P'u(x)) v o= 'Q'ab vbu S(2) (al-l * Pu(X)) v

hence :

Ty = s sTH- (p s) 57 (V. 53)

in correspondence to the above change of locally freely falling system.
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With the derivative (V. 52), (V. 52a), we are tempted then to postulate
the following Dirac's equation for a massive spin 1/2 particle in interaction
with the gravitational field : ;

(Gy3v, -my(x)=0 (V. 54)

This equation can also be written in the following way, where no
mention is made of the tetrads :

(i Y¥(x) 7, -m ¥ (x) =0 (V. 54a)

where
N =y M a V. 55
(x) = v."(x) v ( )

are four point-dependent matrices which obey the commutation rule :

[Y”(X), Y"(x)] = 2 ¢"V(x) (V. 55a)
+

if the v%'s  are the usual, flat-space, Dirac matrices :

[Ya’ Yb] =2 T]ab
+

The gravitational field, which acts on the ¢ field is co?tai?ed in
the matrix I,(x), which must vanish in flat space. In order to distinguish
the Dirac matrices in equation (V. 54) from those which depend on x, we
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shall always make explicit this dependence. Thus, at each point x, we define
the adjoint :

B(x) = v () ¥°

where Y® s the usual Dirac matrix and similary we define :

(v, 9 =3, 9+ 9T (x) (V. 56)

where

_ + (o]
3, ¥(x) = (3, ¥'(x)) ¥ (V. 56a)
T, = v° 1 (x) ¥°

. ina
As ¥(x) y(x) is a Lorentz-scalar and a coordinate-scalar we have
locally inertial system, the identity :

B @) =G +T (3 v)
In an arbitrary system we must have

W) = Fw) = T VT (Y, 0)
and this requires that :

Tﬁ(x) = - T (x)



- 191 -

Thus if Dirac's equation is

(i Y¥(x) (3, + T,(x)) = m) ¥(x) = 0 (V. 57)
its adjoint will be :

179 v(x) + m§(x) =0
or

T, T -Fr,(0)) Yx) +mT(x) = 0 (V. §7a)

What is the current and which conservation law does it obey ?

From the two equations (V. 57), (V. 57a) we deduce the relationship :
(3, 3) ¥*(x) wlx) + B(x) ¥'(x) 3, w(x) +

+ B(x) [y"(x), Pu(x)]_ ¥(x) = 0
Now the expression :

T(x) Yx) wix) = F(x) vH(x) ¥? w(x)

is a four-vector under general coordinate transformation (see (V. 48) and
(V. 46) therefore its covariant derivative is :
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7 (@ (x) YH(x) w(x)) =

=3 (B () Yx) v (0) + T (@ (%) YO(x) v (x))

Thus if the matrix I, (x) satisfies the following equation :

3y YHx) + M (x) vU(x) + [FA(X), Y”(X)]_ =0 (V. 58)

3 ation :
then the current four-vector will be conserved according to the equ

v (x) Yx)  (x)) =

. 1 1 h
The equation (V. 58) follows from the equation for the derivative of the
metric field (V. 37).

Indeed if we replace 9,y(X) by the anticommutator (V. 55a) in
equation (V. 37) we obtain :

3 [y {x), v (x)] - A [y (x), y\,(x)] - v [Y (x),Ya(x):L=

and this equation will be satisfied if there exists a F

matrix which
satisfies equation (V. 58) and :

= - po = (V. 583)
RTINS W [rk’ Yu]_' 0
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This shows that the transition from Dirac's equation in flat space to the form

(V. 58) is correct since v [y* 91 = y* vy v

V. 10- THE DIRAC FIELD ENERGY-MOMENTUM TENSOR

The lagrangean which generates the equations (V. 57) and which
enters the action (V. 28a) is :

=T (x) i yM(x) V,-mv(x) (V. 59)

For the calculation of the variation of the lagrangean with respect to a varia-
tion § guv of the gravity field :

=V () T, v T vx) 8T (x) (V. 60)

we need to know & yM(x) and 6 T u(x) as a function of 9,(x) and its
derivatives and variations.

From the anticommutator (V. 55a) we get :

L6 00, v0a] [0, 6v00] =268 (v. 61)

The solution of this equation is :

1
sy =3y, 8 g™ (V. 61a)
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From the equation (V. 58) we obtain :

W u v u \Y H L
aksy +(6F>‘v)y +I')‘\,Gy +[F>‘,6y]+[dl‘x,y] 0

which, together with (V. 6la) and (V. 58), gives :

1
I R A LI U i IR [5 Ta? Yu]% -0
the solution of which is :

[ ]‘a(x) = % (g\)B s PBua - gus § PBW) Uu\’(X) (V. 62)

where :

¥ (x) =~; [Yu(x). Y\’(x)]

and :
Hv
[% (%), Yk(x)] =i (V(x) ¥YH(x) - g™ (x) vV (%))

We are now in possession of & v¥, equation (V. 6la), of & T,
equation (V. 62), and of & r"'m :
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B 21 BA
ér we 52 (6 ¢%) z au 9 t Bu gAu - ax guu % +
1

BA
+ 79 ’ au 8 e * au é gAu - 31 é guu 2

After substitution of these expressions in (V. 60), partial integra-

tion of the terms with (au § g5,) and similar ones, one obtains, by comparison
with (V. 32a) :

sfd“x.’-_g L=3 fd"'x/-—g T8
the following expression for the Dirac energy-momentum tensor :
T“"(x)=}3?ﬁvuv\,w-mvuw +
*UY, Y Y- 0 v, 0
for fields which are solutions of equations (V. 57) and (V. 57a).

V. 11 - GAUGE FIXING CONDITIONS

As a result of energy-momentum covariant conservation, equations
(V. 34a), there are only six independent equations out of Einstein' s equations
(V. 34). Four conditions have therefore to be imposed in order to complete
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to ten the number of equations needed to determine the ten components of
guv(x)' As gauge invariance is here associated to arbitrariness in the coordi-

nates the gauge fixing condition amounts to making a particular choice of
a coordinate system.

A popular choice are the harmonic coordinate conditions :
uv oL =
g (X) T ,(x)=0

PROBLEMS

V - 1. a) Show that the contraction of the affine connection is :

Fu)\a(x)

3y (Yog v- g(x))

where g(x)

det (g (x))
b) Calculate the

a
gravitational convariant divergence of a vector A% (x)
c) Calculate the

covariant dalembertian of a scalar field :

00(x) = 7, (8®(x) 3, 0(x))
d) show that

v5ﬁ3=%g 3 (75 1) + 1%

HA
A T

what is the formula for an antisymetric tensor ?
V-2, a) Deduce another form of Einstein's equations :
1
RIN Z%wR=K Tp\)

in terms of 1uV and the trace T = T]Jl

u
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b) Apply it to the case of the gravitational field generated by the energy-
momentum of a Yang-Mills field ; what does it have in common with the equation
of the gravitational field generated by an electromagnetic field ?

V - 3. Deduce the equation of the geodesic from a variational principle

58S =0,

- dz! dz2¥ 172
5= f[guv(z) ¥ _d's_] ds

for arbitrary variations & z*(s) which vanish at the boundaries of integration.
Interpret this equation as an equation of motion of a classical particle. What
is the force acting on the particle ? What relationship between gravitational
and inertial mass does it imply ?

V - 4. Show that a matter field tensor Tuv(x) cannot be the source of gravita-
tion in a two dimensional space-time.






CHAPTER VI

Weak Interactions and Intermediate
Vector Bosons
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VI. 1 - INTRODUCTION

In the preceding chapters, we have established the basic equations
for the Yang-Mills and the gravitational gauge fields. A1l these fields are mass-
less . The first theory to be elaborated was that of the electromagnetic field
and later on the Einstein theory of the gravitational field. We have thus seen
the foundations for the study of electromagnetic and of gravitational interactions.

What is the usefulness of the other, non-abelian, gauge fields? The

developments in theoretical particle physics in the last ten years have led us

to a successful description of the weak interactions by means of Yang-Mills fields
Morever, as we shall see, it turns out that this is at the same time a unified
description of both the electromagnetic and weak interactions in the frame work of
gauge theory. More recent research work suggests that the strong interactions are
most 1ikely described by the SU(3) - colour gauge field. The corresponding theory
is the so-called quantum chromodynamics. And unification of strong, electromagnetic
and weak interactions may be achieved in the SU(5) model. Leptons and hadrons aré
also unified in the SU(4) x SU(4) model of Pati and Salam.

In this Chapter we shall briefly review the form of charged weak
currents, the current-current Fermi theory and the intermediate vector boson
version of the weak interaction theory39'78). The Fermi theory was first proposed
in 1934 ; its final form followed the discovery of parity violation in weak reacs
tions by Yang and Lee and the form of weak currents by Feynman and Gel1-Mann and
Marshak and Sudarshan. The Lorentz nature of these currents, namely a combination
of a vector and an axial vector, suggested that the weak interactions might be due
to an exchange of vector bosons between hadrons and between leptons.

VI. 2 - CHARGED WEAK CURRENTS

Weak interactions are successfully described at low-energies by an
effective lagrangean which has the form

73

ZE 00 3, 00 (vi. 1
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where j(x) is the so-called charged weak current. This was shown by Feynman
and Gell-Mann to have the form V-A (a vector minus an axial vector) and is
the sum of two parts, one the leptonic weak current %%(x), the other, the
hadronic weak current h¥(x) :

M (x) = 2 (x) + WM (x) (VI. la)
In terms of the leptonic fields
Ve (X), e(x) ; vu(x), u(x) 5 v (x)s T(x) 5 ---

the leptonic weak current has the form :
P00 = Gy vt (1 yDe) + B, 9} (1 - 4O +

fE -y (VI. 1b)

the points indicating contributions from other possible, not yet known, leptons
(the theory is not yet able to predict the number of possible leptons).

The hadronic weak current cannot be expressed in terms of observed-
hadron fie1qs in a simple way in virtue of the strong interaction between
these fields. One studies symmetry and algebraic properties of hk(x) and its
matrix elements between known initial and final hadronic states can be expressed

n terms of kinematic variables and dynamical form factors in a Lorentz covariant
form.

The Tow-energy hadronic current h'A(x) for ordinary and strange
hadronic matter has the form :

h'A(x) = cos ec(v'?o)(x) - a'?o)(x)) + sin 6, (V'?l)(x) -
- a'?l)(x)) (V1. 2)

where the subscripts (0) and (1) refer to strangeness changes AS = 0 and

45 =1 respectively : o_ 1s the Cabibbo angle : sin 6, ¥ o0.21.

These currents satisfy the chiral SU(3) @ SU(3) commutation
relations,
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If Fa, a=1,... 8, are the generators of the SU(3) group

which satisfy the algebra :

[Fa’ Fb] =1 fape Fe

(VI. 3)

A
then there exists an octet of vector currents V a(x) under SU(3) such

that :

_ 0 3
Fa = [ v a(x) d”x

(Vi. 3a)

There is also an octet of axial currents A)‘a (») such that :

5. \0 3
Fyo = I A a(x) d“x

(VI. 3b)

and the generators Fa5 together with F, form a closed algebra defined by

[Fatt) A0 ] =1 £y Felo)

[Fo@. rim] =1 Fu

£ 5

i fabc c (t)

NCRXCY

(VI. 3c)

This is the SU(3) & SU(3) algebra which is also expressed by the

left and right generators
L 1
Fa(t) = 3 g Fa(t) - Faﬁ(t)g

FR(t) = 3 % Fa(t) + F5(t) g

(V1. 3d)
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which obey the commutation rules :

i

[FaL(t)’ FbL(t)] i fabc FcL(t)

[FaR(t), FbR(tﬂ =if Rit) (VI. 3e)

abc Fc

ACHASY

0
o

One has then

[Fa(t), V'”b(x)] i fope V'Po(x)

[Fa(t)’ A'“b(x)] T fabe A'uc(x)

The vector currents V'A(O)(x) and v'x(l)(x) in equation (VI. 2) are then

!

V'?o)(x) V'Al(x) + 4 v'*z(x)

V'?o)(x) V'A4(X) + i les(x)

The hadronic currents are expressed in terms of the fields which
describie the quark constituents of hadrons.

In the preceding case, in which only strange matter was present in

addition to ordinary hadronic matter, the current in terms of the quarks u,d,s

is

h'A(x) = ii(x) Y (1 - ) d(x) cos 6+ s(x) sine, (VI. 4)
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In the case inwhichwe consider the ordinary, strange and charmed

hadronic matter, formed by the quarks u,d,s,c, the charged weak current of ha-
drons is :

hA(x) = u(x) Yx(l - YS)% d(x) cos 6. + s(x) sin ecz +
h (VI. 5)
+ 8(x) Y1 - Ys)s-d(x) sin 8 + s(x) cos ecg

The following are the selection rules which these currents give
rise to :

Transitions with :

Ac=0, As

n
o
.
(>
O
n
—
-

Al

n
o
-
—

A
h"™ ~ cos ec

>
(2]
"
(=}
D)
[~
(%]
n
>
o
n
—

., Al=1/2 h}‘msinec

>
o
]
—
.
[
(7]
1
=3
:
[
o
n
'

aT=12 : ha-sine,

bc=1, As=4Q=1, al=0,1 : h*~cosd,
that is,
A
h" (x) =3 (VA-Q)\)A5=0+ (V)\ -aA)As= 1 z cos ec +
Ac =0 Ac =1
(V1. 5a)
+z U4 '”)‘)As =1t (v '“A)As - Og sin 6,
Ac =0 Ac =1
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The generalized charge operators :

§? = 0 3 -
A J v a(x) d’x , a=1, ..... 15

are the generators of the flavour SU(4) group.

Together with

T J,,°a(x) 3x

a

they generate the chiral algebra SU(4) 8 su(4).

Calling q(x) the quark field for the quartet u,d,s,c one has
for these currents :

A - A T
Via(x) = a(x) ¥ o a(x) (VI. 6)
n
a)\a(x) = a(x) Y Y _Za_ a(x)

n .
where —% are the fifteen generators of SU(4) in the 4 x 4 matrix
representation. Sum over the colours js understood.

The weak currents are therefore (VI. 1b) for leptons and (VI. 6) for
quarks which enter the expression (VI. 5a). For more than four quarks,
u,d,c,s,t,b the terms with the Cabibbo linear combinations of d and s in
(VI. 5) are replaced by u y*(1 - v°) d', ¢ Y (1 - ¥o) s, By - ¥°) b’
where d',s',b' are the transformed of d,s,b by a unitary matrix93).

VI. 3 - THE INTERMEDIATE VECTOR BOSON FIELD

Let us consider the R-decay of the muon

ooy ted Ve (Vi. 7)
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Its amplitude will be given by the following number, if we consider the lagrangean
(VI. 1) and the currents (VI. 1b) :

1
S=-—+ [a*x h(x)y“(l - vs)um% ()M (1 - Y7 )vg(x) (V1. 8)

The form V-A of this interaction suggests that this amplitude
might result from an interaction between the currents and a vector field HA(x)
so that instead of the lagrangean (VI. 1) we would have the following one :

ZL-g 4 () +hee. (V1. 9)

The charged field Nx(x) would thus play a rdole similar to that of
the photon field in electrodynamics. With this interaction (VI. 9) the ampli-
tude of the reaction (VI. 7) will be :

. 2 4 -
s = -ig [ jd x dly@ (v (1 - VP (B(x - 1)) EIL - Y)ve)
A1
where (AF(X - y))kn is the Feynman propagator for a massive vector field :
(Bp(x = y)) = (g, + -1y 3, 2) Ac(x - (V1. 10)
F - m;w*zxn)r( y)
m, 1is the mass of this field and

d4k e-ik(x-y)
(2m)* K% m fric

Blx - y) = -
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In momentum space we have for S and S' :

w
n

4 4 .
(2m)" & (p\,11 +p, + p\.,e p,) N.M

w
)

= @m* st (p, gt P - by e
i Ve

where N is a normalization factor and

2 : 5
v é .1
M=-i = } V(Du)ya(l-v )u(Pu)gg e(pg)v, (1-v )v(-p“e)g (VI. 11)
kokg
Yap™ —2‘
M' = gv(p W (1-y°)u(p )g -T——2—3e(pe)ye(l-y )v(-p, ); (VI. 12)

We see that in the low momentum-transfer approximation the two matrix elements
M7 and M' coincide if :

2 2
k™ << My~ o ko= qu Py
and
¢ . % S
L V2

In this way, the Fermi approach being obtained in the domain where
it is valid, it would be more satisfactory to describe weak interactions by
means of such massive vector field W (x) -the so-called intermediate vector
boson field.
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The lagrangean (VI. 9) thus replaces the Fermi current-current inter-
action lagrangean. The total lagrangean of the naive intermediate vector boson
theory of weak interactions is :

_ _ 1 v+ + 2t 7ogs O _
Ly © —Z-N wuv m, W wu+§1(1y Y mz)ﬂ +

- . - ,. . Q A . At .+
+ L v iyt v +Za iyt -Ma+g (W WG
v c
L
(V1. 14)
which replaces the lagrangean of the Fermi theory :
- s - . G
Le=Z 2(iy* 3 -m, 2+ £ v, iy*8 v+ Iz ,: a. _ OF A+
F . a 2 o X a2 cq('ly aaM)q+/23 3y (V1. 15)

The lagrangean which results from the Salam-Weinberg theory contains, among other,
terms of self-interaction between the vector bosons (§ VIII. 6).

VI. 4 - HIGH-ENERGY DIVERGENCES IN THE FERMI AND VECTOR BOSON THEORIES

The Fermi lagrangean (VI. 15) leads to cross sections for the
neutrino-lepton scattering which grow with the energy and violate the unitarity
bound. This difficulty is overcome by the intermediate vector boson lagrangean
but the latter also leads to difficulties for processes like the production
of W-bosons in the neutrino-antineutrino annihilation.

The matrix element for the elastic neutrino-electron scattering due
to the lagrangean (VI. 1) is similar to the expression (VI. 11) :

N7

M= T (a\’e Y1 - Y5)ue)([je Ya(l - Ys)u\)e) (VI. 16)
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for the reaction :

Vo o+ + v + e
ee e

This gives the following differential cross section :

2,2
d c(ve + vé) GF2 (s - mg ) ) . )2
= — — s = (pve Pe
dQ 47 S

and this becomes, for high energies :

dofyv, +v) 6.2
e e’ o F 2
—8 e s for s > m
dQ 4a c
The total cross-section is :
6.2 2
g (\Je > \)e) v - S > s >> me

the differential cross-section is :

d oy kv 2 -m 22
—Ter V) G L) 1 a2 s (s -
dQ 4n? s as

GFT . O

(VI. 16a)

(V1. 17)

(VI. 17a)

(V1. 18)
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which for high energies goes over to :

— 2
do(Vy *Ve) o G s(1 + cos e)z < s> m?2 (VI. 19)
d Q 4 4 e

where © is the scattering angle in the center of mass system. The total cross
section is, for high energies :

.2
— — ’F
o (Vg> Vg) ¥ 3 S (VI. 20)

The fact that the two cross-sections, one for v, > V,. the other for
Ge e Ge’ differ, can be understood by the following argument : for very
high energies, the electron mass will be negligible and this particle will be
left-handed. As Ve is left-handed, it follows that the component of the total

angular momentum on the momentum direction in the center of mass system
vanishes :

->
p\)
——
= —>
J
v
hence only S-waves

contribute to o in (VI. 17).

For the reaction (VI. 18), on the other hand, the antineutrino is

right-handed, hence the total angular momentum over the momentum direction
will be one :

> ->
pf) pe
— B e s, |

Therefore the p waves contribute to o in (VI. 19).
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Now the unitarity of the S matrix implies an upper bound for cross-
sections and in the case of S-wave scattering this is

do

1
<
da = p?

el

in the center of mass system where s = 4 p2 (mass neglected). Therefore this

bound is attained by the cross-section (VI. 17) when :

2

> vpJ
ﬁhJH¥

s = i , s ~ 4 p2
p

that is, for the center of mass system momentum :

that is, for p Y 500 GeV.

This difficulty is eliminated in the intermediate vector boson
theory. In this case the reaction (VI. 16) has the diagram

e

+ Figure VI. 1

Figure VI. 2



- 212 -

The amplitude of the latter is :

gas- 0 7
M= (T, Y1) ——S——”—z— (GerP(1v)v, )
- my

e (V1. 21)

where :

2
s=p = (p ¥ p\,e)2

The term in k_ kg in the numerator of the propagator will give
a contribution proportional to the electron mass in view of Dirac's equation
for the incoming and outgofng leptons. Thus :

- 5
Yy, (Pe * Py ) Y1 - ¥y, =

by 5
VV ka Yu(l =Y )ue a

e e

(1+ Ys)ue
e

- 5 o _ -
Vve (1 +¥7)(pg), Y Ug = Mg V,,

As this term is thus proportional to -Ef we have for high energies :
My

4
o (T, +7,) ¥ L (V1. 22)

This s dependence is due to the term in s in the denominator of the propa

gator.

We see that instead of growing with s as in (VI. 20), the cross-

section for antineutrino-electron scattering decreases with s as 3 -

Some comments are needed now on the origin of the energy dependence
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of the cross-sections (VI. 17a) and (VI. 20). The reason is that the Fermi
coupling constant 55?; has a dimension of (energ_y)-2

Sgi mp2 ~ 1.05 x 107°

2
Therefore as EE?: appears as 55?; in first order in the cross-section,

2
EE? will have to be multiplied by a factor (energy)2 in order that the

dimensjon g2 of the cross-section appear :

2 4
o~ g}: Ez ~ 1 (energy)2 ~ -9—’2- ~ 22
(eneray) 2

As at high energies the masses are neglected the available factor is really the
center of mass energy.

In higher orders then the energy growth of the cross-section will be
stronger. When we consider the lagrangean (VI. 14) the dimensionless coupling
constant g appears in (VI. 21) and the propagator will give the needed
€Nergy dependence for the cross-section (VI. 22).

As to the unitarity violation resulting from (VI. 9), it can be seen
immediately in the problem of the neutrino-antineutrino annihilation with the
Production of W bosons :

v+y - W w

the diagram of which is (Fig. VI. 3) :

oot -’
~ '
h e 7 ? l‘,
> — Figure VI. 3
Ve
\Y



- 214 -

The amplitude of this diagram is :

+
Y(p, - k') +m,

M= i 92(3\J (- et
e

- A 5
1-v7)y,)

77 Yl v

e - KD e

+ - . .
where ¢t , E-A are the polarization vectors of W and W respectively
u

For high energies the cross-sections for production of transverse
and longitudinal vector mesons are, respectively :

o (W - W+T Wp)

The latter cross-section violates unitarity.

. . i rmedia-
We may, finally, compare quantum electrodynamics with the inte
te vector boson theory.

Quantum electrodynamics is renormalizable. The divergent integrals
which occur in higher order perturbation terms can be eliminated by the
introduction of a finite number of counter-terms which is the same whatever
the order of the calculation and which have the same form as terms in the
initial, bare lagrangean. This means that it is possible to redefine the
parameters of the theory -in quantum electrodynamics the mass and the charge-

. P jcal
and the scaling of the fields in such a way as to be left with finite physi
quantities to all orders.

The Fermi current-current lagrangean and the lagrangean of ?heb]e
intermediate vector boson theory of weak interactions are not renormalizable.
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It is a necessary condition for the renormalizability of an interaction
lagrangean that the coupling constant be either dimensionless or of dimensions
with positive powers of energy. In the case of the vector boson theory, the
coupling constant is actually dimensionless, however, the propagator for the
massive vector field is

In the case of 1ow momentum transfer, as already remarked,

2

k= << mw2

the effective coupling constant will be (VI. 13) and so it is the same as in
Fermi theory.

For high energies, the asymptotic behaviour of the propagator is

1 ku kv
m2 K

and again the effective coupling constant is (VI. 13).

This term can be transformed away in the case of neutral massive
vector bosons in interaction with conserved currents but is present in the
case of interactions of charged vector bosons with charge-changing currents.

Physicists were thus confronted with the following situation : on the
one hand there exist the vector boson gauge theories which are renormalizable but
the gauge bosons are massless ; on the other hand, we need massive vector bosons
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for the description of weak interactions by field theory but this theory
is then not renormalizable.

The solution to this problem was found after the discovery of the
réle of spontaneous symmetry breakdown in field theory and the Higgs mechanism :
it was discovered that the renormalizebility character of a gauge theory is not
lost when the symmetry is spontaneously broken but this mechanism leads to the
introduction of massive vector fields.

The work of Brout, Englert, Guralnik, Hagen, Higgs and Kibble led to
the discovery of the Higgs mechanism ; and the work of Salam and Weinberg, and
of 't Hoft, opened up a whole new domain for the theoretical description of the
forces of nature as different manifestations of basic gauge fields.

PROBLEMS

VI - 1. In quantum field theory, the fields are operators defined in a Hilbert
space of state-vectors |y >. Corresponding to a Poincaré transformation of the
geometrical coordinates, either the operators do not change but the state
vectors change, and this is the so-called Poincaré-Schrodinger representation

X' =a+2x ~» Iﬂl‘>s = U (a, 2) H’ >S ’ e's(x) = eS(X)

where 6(x) designates a point-dependent operator ; or else the state vector
does not change, it is the operators that change ; this is the so-called
Poincaré - Heisenberg representation :

lW'>y = 1o >y, 0 (%) # 6y(x)
The equivalence of the two representations is expressed by

l<y'| 6'(x)|(p'>s|2 = |<p'| 9'(X)|w'>"|2
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whence for unitary transformations U(a, 2)
o' (x) = U (a, 2) 6(x) U (a, 2)
From this equation and the expression of U :

U (a, 2) = exp 3 ia pH - % € JHv

1

where P  and Juv are the momentum and angular momentum operators deduce
the following equations for a Dirac spinor :

CON R

[o0a, o). [9;: AR CEMEEE Sl 16

VI - 2. The global phase transformation of a complex field

induces a transformation on the field (x) regarded as an operator in Hilbert
space :

®'(x) = y71 (x) ©(x) U(x)

the generator of which is the charge operator Q. Deduce the commutation rule
between the field operator ¢ and the charge Q.

VI - 3. The effective lagrangean for leptons which interact with an electromagnetic
field ang among themselves according to the weak current-current coupling is :

LLL

(v) (W)

where

1 = . - ..a 1 _ LB
a%:,zi Q(IYaaa_mz)£,+\)21Y 3a-2-(1 Y)\)E
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+hec. 5 2=€,u, 71

<

(v) = ¢ j;\(wr) A ) s
My =Iiv

is the electro magnetic current of leptons ;

7 .

A .
=T ™ h®

A - 5
P =257 -

is the leptonique charged weak current :

a) Write esz7in terms of the left-handed and right-handed polarized components

for all fields 2 and vy

¢L=%(1'Y5)U); wR=%(1+75)w

b) show that Jggyis invariant under the chiral transformation :

¢) show that 15?715 invariant, in the limit m

+ 0, under the unitary
leptonic group U1 @ U2 where

A
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(ve), (V)
(\,U)L + Ul (\’u)L
(o), (ve),
er €r

uR - U2 UR

Tr T

where U; and U, are arbitrary 3 x 3 unitary matrices.

d) Under which special choice of Up and U, does one have the (u, e)
universality, v I e, in the limit m, = Mg 4

VI - 4. Consider the lagrangean of the preceding problem.

a) For which special choice of the matrices Ups UZ does one obtain separate
conservation of Tepton-number currents for each kind of lepton (&, “2) ?

b) Give the corresponding lepton numbers.

c) Is the photon decay of muons u > e + vy possible under the separate conser-
vation of lepton numbers ?

d) Introduce the 1eft-handed isospinor for the lepton & :

vy (X)

z(x)) ETemT

! 5 1 3
Ly=5(1-77) by =7 (1-%7) (
and the right-handed isoscalar :

Ry =z (1+4%) ax) .

What ig the form of the preceding lagrangean in terms of these fields in the
Timit o 0 ? What is the form of the electromagnetic and weak currents ?
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e) What are the global phase transformations on Lz and Rl which give rise
to these currents by Noether's theorem ?

F) Give the Nother current corresponding to the SU(2) global phase transforma-
tion :

1
L2 + exp (ia-3 ) L2

2 2
and its relation with the weak current.

VI - 5, The weak leptonic charge is defined from the weak current

A e = A 5
J(w)-)ivz'y (L -v7)2

by the equation :
Quy (&) = [ 30, ()
= [d3x )é 3v+£(x) (1- 'Ys) 2 (x)
The fields are quantized by the anticommutators :
[e, K 1), € (e, 0] = (x - x') = [y (%, 1), vig(X's 6]
a) Find the commutation relation :

[Q(w)(*’)' °+(w)‘t)]

by using a relation between [AD, BC) and [A, 8] o [ A, C] + ° [D’ B] +
and [D, C],.

b) Call 2Q(,y5(t) the above commutator. Find the commutation relations which

are satisfied by the hermitian operators KLa, a=1,2,3 where

Qe (8) = 2 (K + i &by

L
Quyalt) = 4 K73
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c) Separate the vector and axial vector parts in Ka’ call them K a and
Ksa and define :

R 5 L

M K =?1(|<-|<5

K a a a)

a " % (Ka + K

Find the commutation relations between KRa, KLa, which define a SU(2) 8 SU(2)
algebra.
d) Whatis the relation ship between the electric charge and the total Tepton number ?

Give the commutation relations between the lepton charge Q(Y) and the
operators K.

VI - 6. a) Given a massive Proca vector field ¢"(x) in interaction with a

vector current j“(x), write down the equations which generalize Maxwell's

: . k ok k
equations in terms of the fields g (v) = g (v)"g (v) =% €ken

@ " (v)
wh = -
ere g v 3\’ ¢1.I aLl ¢\, .
b) Obtain similar equations for an axial vector fiéld .z ¥(x) in interaction
With an axial vector current o%(x) in terms of the fields

ok k n uv
8 . ¢ 1 & ith & -
(a) ~ (a)° & (a) =7 Sken (a) With (a)
VM - M V.

€) Assuming the fields in a) and b) have the same mass, obtain the equations
%hich give a simple model for the intermediate boson field W' which interacts
with vV - A currents.

]






CHAPTER VI
The Higgs Mechanism
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VII. 1 - THE NOTION OF SPONTANEQOUS SYMMETRY BREAK-DOWN

In order to introduce the Higgs mechanism into the frame of gauge
theory, let us first examine the notion of spontaneous symmetry break-decwn.

There are examples in nature,of symmetries which are not exact
symmetries of the lagragean of a physical system. Thus the SU(3) group is an
exact symmetry only if the components of the flavour multiplet of quarks have
the same mass. To a lagrangean which is invariant under a group we may add a
"small" term which breaks this invariance and this gives rise to the idea of
broken symmetries or of almost exact symmetries.

Thus the lagrangean for three quark flavors, u,d,s assumed to have
the same mass m :

3
z
f=1

L= (-lf (iy.2 - m) G

is invariant under the flavour SU(3) group :
A
. k
e T

Q¢ > e RN

As the quark flavours have different masses the effective lagrangean will be
of the form :

3
L= Qe (iy.s - d (m- s (m-m
fil 9 (iy.d -m)ge+d (m-my) d+s (m-m)s

by assuming that m = m,- The additional terms clearly break the above invarian-

ce and the symmetry is the more broken the larger are the mass differences.
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There is, however, another very important example of broken symmetry :
the lagrangean is invariant under a group of transformations but the ground state
of the system -the vacuum state in field theory- is not invariant under this
group. The well-known example is the Heinsenberg ferromagnet : an infinite
crystalline system composed of spin - % magnetic dipoles with spin-spin
interactions among neighbouring dipoles. This interaction, although invariant
under the rotation group, tends to align the dipoles in a given direction ; the
ground state is thus not rotationally invariant and is one of an infinite set
of possible ground states, corresponding to the continuum of directions in

space.

Similar is the case of, say, the deuteron ground state. Its hamilto-
nian has a spin term (Ep . En) f(r) and a tensor force term which are invariant
under rotation but the deuteron ground state has spin one and is thus three-
times degenerate.

Whenever this phenomenon happens -the lagrangean admits of a symmetry
group but the ground state is not invariant under this group- one speaks of a
spontaneously broken symmetry.

Let us now consider the traditional example of a real scalar field
with quartic self-interaction :

2 2 4

L=% (3" 0}(3, 0) - u° @ --}!w (VII. 1)

In the classical treatment of this field, the ground state, the state
of lowest energy, corresponds to the vacuum state in quantum theory.

The field equations are :

(o + uz) ® +-§! w3 =0
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A constant field ®y» which does not depend on x, will be a solution of these
equations if the following relationship holds :

@, w + -)‘3—! woz) =0 (VII. 2)

As the hamiltonian corresponding to the above L 1is :

2 2 2

4
H=%ﬂ+($tp)2+uq} +%!(p

where

m(x) = 3° @(x)

we see that the solution @, of equation (VII. 2) is the one which makes the

potential energy U(y) in (we call potential energy that part of H which
survives for a constant field) :

FEIER G0 {+u @
U o) = g1l of + 3 o

a minimum ; as Ty = 0, ] ®, = 0> ¢, gives the minimum of the energy H.

Now as H must be bounded from below, the constant A is positive :
A >0

. . 2
Therefore the position of the minimum depends of the sign of wu".

If uz > 0, then the only solution of equation (VII. 2) is :

and the potential energy U(y) has the form given in the Fig. VII. 1. The ground
state corresponds to this solution @, = 0.
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U(o)

v

Figure VII. 1

The constant u plays the rdle of the mass of the field (of the
scalar mesons described by ) and determines the first term in the development
of U(w) around the minimum

2
- (po)

Ulo) = Ulw,) + (@ - 0,) U'(w) + U"(@0,) + -

Let us now assume that the parameter uz is negative
uz < 0

In this case the equation (VII. 2) will be satisfied by ¥, = 0
but alsg by :

- _6u .
(DO('I*) = + 5 = a (VII. 3)
or by .
6u (VII. 3a)
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so that :
U, =0

3 u4
v (wb(+)) =U (wb(-)) =T7T X

The form of the curve will now be given by Fig. VII. 2

u(e) f

Po(-) Po(+)

Figure VII. 2

There are two values of o, wo(+) and @5 (-)? which give the minimum of
U(eo) .

As the lagrangean is invariant under the transformation
o > - @ (VII. 4)

the ground state is now degenerate and each one of the two possible ground states
transforms into the other one under this symmetry. In virtue of this symmetry,
it is irrelevant which value of o, we choose, Oo(+) OF Op(-)? for studying

the development of U(o), H(p) and L(p) around the chosen ground state. But
once we make this choice the symmetry is spontaneously broken,
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In order to study the behaviour of the lagrangean around the chosen
ground state we define a new field :

p-a (VII. 5)

where we call a the vacuum state which we choose :

3= %o(4)

Then we can express the lagrangean (VII. 1) in terms of o' and get (we drop
constant terms) :
1 ' ] ]
L =7}(a“w)(auw) -2 (@ +a)2(-%! (@ +a)
(VII. 6)

= %3(311 wl)(au ®') - m2 w.z(_é_!g ¢|3 _%! ‘P.4

where

me = 2wl (VII. 6a)

The transformed field ©' has the properties that we require of a physical

Field : its vacuum state (or minimum energy value of the field) corresponds
to w'o = 0, its mass is the positive number + V/'2|u2| and it displays a

?Ubic interaction ~ '3 besides the quartic coupling. In view of the cubic
Interaction, the lagrangean above is not invariant under the reflection

and it would be difficult to guess from this lagrangean that it came from
another one which possessed the symmetry (VII. 4).
Note that if we want the ground states to have zero potential energy

4
We add 4 constant, g- l%— » to U(p) and obtain a function

2
Uyo) = %T @ - 28?2, af = - é%‘ >0
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This example shows us that it is possible to change from the field

with a mass term corresponding to an imaginary mass to another one with a
physical mass.

VII. 2 - GOLDSTONE BOSONS

This type of considerations leads us to examine the case of sponta-

neous break-down of continuous groups of symmetry. This study gives way to the
notion of Goldstone Bosons.

Let us now examine two scalar fields ©;(x), w,(x), the lagrangean of
which is :

2, 2, 2 |._
L= % (al-l wl)(au ‘01) + (al-l wz)(au 102) -u (wl + 9, )
- %l(mlz + (922)2 (VII. 7)

This lagrangean was chosen invariant under the group S0(2) of
rotations in the plane 915 0,

9. =9 COS a - P, SiN a
b 2 (VII. 8)

S
N
[

9 sin a + ©, cos a

or

©4 cos o -sin a v,

(VII. 8a)
®', sin a cos a 0,
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The potential energy is here :

2,2 -
Uops o) = g ulto” + 0,20+ 3y (0" + )

and its minimum occurs for :

’3%%“”1 3“2*%! (“’12‘“"’22)% =0
Y
%E=(02>U2+%!(‘012+‘922) =0

For u2 <0, x>0 the minima occur for 0, and @y on the circle

02 + w22 Y

where, as before :

The ground states are the points ®1s ©, which lie on this circle and they
transform into each other under the group S0(2). We can always choose the
axis in the ®1s 0y plane in such a way that

e =2 s G =0

is the ground state, which, as before, implies the spontaneous break-down of the
Symmetry.

The transformation to new fields around this vacuum state is the
foT]owing

LT T A
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which leads to the lagrangean

2

R R OT L R AC S IR

2y L2, 2.2
-3 a 0P+ 00 -0ty ¢ 0t0)

We see that one of the fields, m'l, acquires a positive mass :
m= V2p?| - Vg

whereas the field w'z is massless. This massless field is called a Goldstone
Boson. And this result is an illustration of Goldstone's theorem : there will
be N-M massless bosons in a theory in which a sub-group of dimension N-M
from a symmetry group G of dimension N, is spontaneously broken.

Consider a n-dimensional real vector field ¢ the components of
”
which are scalar fields

=
©

1

]
n

]

with lagrangean :

L=z (* 0)(3, 0) - Uo)

Let G be the continuous group which leaves the potential energy U(p) invariant.

Let Ta be the N generators of this group and wy the infinitesimal parame-
ters so that

©

> @' = (I+ iwa Ta) )
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Ta here is the n x n matrix representation of the generators. By definition,

under this group :

-0\l I ¥ =
6'J--a— 6(pk = 1Wk ma(Ta)kgtpz-O

Pk

As the parameters w, are arbitrary, these are N equations :

Y

Wk (Ta)klw!l.:O a=1, ..., N

If we differentiate this equation once we obtain :

2y 1) £ 201y =0
%, 30 a’ke ® T30 Valkp T
Let us take this equation at the value

9 = a

which minimizes U(p) ; as :

¥ Jy = a
we get
2
o~ U =
e aq:k> (Tedkg 2 = 0
p w=a
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Now as we expand U(p) around a we have :

Ufe) = U(a) + 7 (), (@ - a) (@ -a), +..=U(a)+

2
1{3° U - -
+2(_3wk3¢£> ) a)k(w a)g + ..
p=2a

so the second derivative above is just the squared-mass matrix, which gives us :

(Mz)pk (Thg 3,20 5 a=1, ..., N (VII. 9)

If, after the choice of the ground state, a sub-group g, of dimension n,
remains a symmetry of this state, then for any generator of this sub-group :

(Ta)kﬂaﬂ.:O B a=1, ..., n < N

whereas for the generators of the group (G - g), of N-n dimensions, which
breaks the symmetry, we have :

(Todye 3¢ # 0 H a=n+1, ..., N

T?erefore, the equation (VII. 9) for (MZ)pk says that there are N-n zero
eigenvalues for the squared-mass matrix, the massless bosons.

This result prevented for some time the consideration of spontaneous
break-down of symmetries into particle theory since it would imply Goldstone
Bosons and no evidence was found about massless, spinless bosons.

In