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Sind wir vielleicht hier, um zu sagen : Haus, 

Brucke, Brunnen, Tor, Krug, Obstbaum, Fenster, 

hochstens : Saule, Turm .•. aber zu sagen, 

verstehs, oh zu sagen so, wie selber die Dinge 

niemals innig meinten zu sein. 

Rainer Maria Rilke, Die neunte Elegie 
Duineser Elegien 
Im Insel-Verlag, Frankfurt am Main, 1962 





Preface 

In :the lah.t Mo.teen LjC!aJrA :the ctt.ten1pt,6 n.t a. wufi.ied duCJri.ption 06 
the 6undamenta£ phy6icai. int.<Vta.cUOn6 by ga.uge Meld :theo!Llu ha.ve given we 

to ex~g development6 in pa!Lt,i.c.le phy6iC6. 

In .thl6 book, wlU.clt !JILCW ou:t 06 lectuJr.U 1 gave in :the la.6.t 6ew LJeo.IL6 

in ~ eveJLal place-6, ax. Stlta..6 bouJtg UniveJLhay, ax. .:the 19 80 XIV CU!t6o Centlw 
AmeJL.icano de FL\ica, held ax. .:the UniveJLhay 06 Panama., ax. .tlte Fede!r.al Un.i.veJLh.i.­

.ty o 6 R.i.o de Janei.Jr.o and :the Cenbr.o 81tahilei.Jr.o de Puqui6ct6 FL\.i.Cct6, 1 tlr.y to 
exp.fa.in .in an elementally wa.y :the bct6.i.c noUon6 a.nd p1Llnclp£.e6 o0 ga.u.ge :theo!Llu. 

In pa.Mic.ui.aJr., :the Sai.am-WeinbeJtg model 06 electlr.o-wea.k int.<Vta.ction6 L\ developed 

in 6ome de.hUl inchtc:Ling UA ve!UM.cati.on .in :the 6.tud.y o 6 neutlt.ino-iep.ton 

6ca.tte!Ung and .:the paJtton model. TIU!, model .i.i, ax. p1r.uent. the mo6.t Mcc.e~~ 6td. 

ctt.tempt a..t a. u.n.i.6.led theolUJ o 6 phy6ica.£. b1-t<Vta.ction6. 

The aim o 6 .thl6 book L\ to give a. 6el6-c.on:ta.ined intlr.oduction :to :thue 

theolLlu. 

The Jr.ea.dell wllf. be ct66umed to lznow bcu.i.c qua.n;twn mec.hanic.6 a.nd ~pecial 

1tel.a:Uvay toge:theJr. with the elemena 06 g1r.oup :theo1ty needed 601L thue ~ci.­

pUnu ; a. knowledge 06 the qua.l..ita.U.ve duCJri.p:tlon 06 element.a!ty paJt;ti.c.lu and 

the..i.lt quantum numbeJl.6 w.lU a.R.J,o be Jr.equbted, ct6 well ct6 :the eiement6 06 :the 

Feynman cii.a.gJr.am6 .technique. 

The 6.i.Mt Cha.pteJr. c.o~ the bcu.fo no.tion6 06 c.la.6~.i.cal. 6.i.etd 
theo1r.y a.nd :the all.. .i..mpoJr;tant NoetheJr.'6 theoJr.em. An -lntJr.oduction L\ al.60 given 

to Mllion6 a.nd .ln.6.tan.ton6 a.nd :the topol.og-lc.a.i quantum numbeJl.6, ~ub j ec.U 

whic.h a.M.&e 61l.Om the. ~tu.dy 06 the. non-.U.ne.M 6-leld e.qu.ati.on6 .in ga.u.ge theolLlu 
a.nd whic.h have been developed in the 1r.ecent. 6ew yeaJr.6. 

Buidu the ~.tud.y 06 the electll.oma.gne:tlc a.nd :the Yang-~ gauge 
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6,iei.d6, a chap:tvz. on :the. gJtavU:iLtionai 6-(.ei.d .i!i bzci.uded. We :tlunh tluu: .thi.!i 

chap:tvz. ,U, 06 .ln:tVZ.e.6:t 60ft .two Jte.M0116 : 6.ilt6:tltj, d:. ma.tj be 6ugge~ti_vc ~Ol!. tlze 

gtta.dua.:te !>:tude.n:t6 :to ielVLn :that :thvz.e. aJte 6evvz.a.t common 6eatuJte~ be:twe.cn tliL!i 

and :the. Ya.ng-f.UU6 Meld-non-i.<J1eaJt e.qu.a.tion-6, -6.irnUaJt cova!Ua.Hce. beltav.<ou/t 

06 c.VLtain qua.ntitie-6 !luc.h M :the gauge. Meld and ill MWLce, w1dCJl :the. 

coM.e-6poncUng gMup6. Se.c.onc:U.y, .<.:t -W p!te.W ei.y :the uni6,lca.tion o 6 g1La.v.{:ta..t,io11ai 

with J.i:tMng, ele.c,t1iomag11eUc and weak .ln:te.Jtawon.6, which p!te-6e.n:t :the. gne.ate.~.t 

c.haUenge to :the.MW ci.a.n.6 nowa.da.y6. 1:t would be 6-t.imui.a.ting tlta.t tlte. yo wig 

1te.ade.M acqfLiJte a bM.<c. knowledge. 06 :the 6.<:tu.a.tion 6oJt e.acl1 gauge 6-(ei.d, 

gJtavUy .included. 

PeJLtwr.ba.tion c.ai.c.ui.a,tion.6. 1tenolr.m4Uza.tion and pa.:th-.in:te.gJta£ quarz..Uza­

tion Me no.t 6.tuclled .ln .:tfUA book. Two exceUen:t book.6 on tfUA !lubject w/Ucfz 

WVLe Jte.c.e.ntl.y pub£.,.i,6he.d, one. by C. NMh, :the o:the.Jt by J.C. Tay.eon, a.Jte. .i.nd.lca­

.te.d .ln :the b.lb.llog1taphy ; :they 6ully devei.op .the bM-lc -lde.a6 and .:te.chn-ique.6 .in 

~ domain. The 1r.eade.Jt -W -i.nv.l.ted to con.6ui..t excei.ten:t Jtepow and Jtev.lew 

Mtic.le-6 mentioned .in :the b.lb.liog1taphy. 

A .6e.ction .ln Cha.pte.Jt IX deai.-6 tuUh ve.Jty 1teeent .6pe.c.uia,t<.on.6 on 

poM.i.ble l ep:to n and qUa.Jtk 6.tltuctwz.e-6, 60Jt which :the.Jte .U. 60 6M no expe!Ume.n:ta£ 

ev.ldenee. An .i.ntlr.oduc.Uon .to :the. SU(5) model 06 g1r.and un.l6.{.ca.Uon .U. plte-6e.nted 

,fo Chap.tvr. X. P1tob£.em6 Me given 60Jt ea.eh c.hap:te.Jt and Mlution.6 Me. c.oUe.e:ted 

a:t .the end 06 .the book. 

1 am mo.6.:t gJr.a.:te.6ui. .to AbdUJ.> Salam, V.i.Jr.e.e:to1r. 06 the 1n:tvz.na..tional 

Cent/Le 601t The.OJte.tic.al Phyo.i.C.6, 60Jr. 6pon6o!Ung my lectwz.u .in Panama and to 
Ma!Uo Bunge. 60Jt hU 6UppoJr..t and e.ncowzage.men.t ; my but .thanlu, Me a.i.60 due 

.to B. FeJtnandez and fUA eoUea.gue6 06 .the Un.i.veMUy 06 Panama, to R. Lobo, 

E. LeJtne.Jt and :the..i.Jr. coUeague.6 06 .the. Ce.ntlr.o &.M.i.le..i.Jr.o de. Peoqui-6M F-i.-6.lca.o 

and 06 .the Un.i.veM.l:ty 06 Rio de Jane..i.Jr.o, 1tupe.wvely 60Jt .the. humanly iuvun and 

k.i.nd hoop-ltaLi.,ty. The aut.ho1r. g1r.ea:tty p1to6.l:te.d 6Mm c.onveli6a.tlon6 wi~h J.J. 
G.iamb.i.ag.l, Ch. Rag.i.ada.k0.6, C. A. Savoy, J .A. Ma.Jttin.6 S.lmau and V. Spehi.e.Jt on 

.top.i.C.6 06 :th.lo book. 
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I am dee.µf,y gJutte6ue to the ru.LtltoM ru1d to :the Nobel Fowula.ti.on oM 
tlzc,iA /~ind pe..!wiiBion to 11.epwit :the .eec.:tu!z.u g.<.ven by :the 1919 Nobel LlU.Vtea.:tu 

Slzc.Cdo11 L. Gfct;~/10w, Abdu~ Salam a.nd Steven Weinbvr.g. 1 am equ.a.Uy g!z.a.:te.6u£ :t.D 

tlic Plz~r~icae Socictt} 06 Ja.pru1 and to .the a.u,tliOJz. 6011. fU..ndf.y pvunltting .the 
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06 tlze 79tlz Intc.tmationai. Con6Menc.e on High Envr.gy Phy~-<..Cl>, 885-903, Tokyo 

( 7978). 

Madame E!Uce. No!z.:tlz pJtepCVLed tlte tqpeACJlipt with g1tea,t a.b-lllty and 
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J. LEITE LOPES 
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Introduction 

1. - You all know that the philosophical dream of physicists has always 
been to reduce {and thus "explain") the enormous varieties of material bodies 
and events in nature to configurations of a small number of basic constituents and 
their interactions -the Greek atoms, the atoms and molecules of the chemistry and 
physics of the XVII th century, the elementary particles of the last fifty years, 
the quarks, leptons and fundamental bosons of today. 

The ninety two elefTlents of the Mendelejev table were explained in terms 
of three particles, the electron and the proton and neutron ; these, together 
with the photons, responsible for the electromagnetic interaction among electrons 
and nuclei, were the primordial objects of the physicists around 1934. 

The later discovery of pions, postulated by Yukawa in 1935, to 
describe the nucleon interactions, and then of muons and neutrinos, of strange 
particles and ressonances, seemed to sugqest that the underlying reality of 
fundamental particles was perhaps too rich to be possibly reduced to a small 
number of objects.The number of supposed elementary particles soon became 
at least as large as the numbt:r of elements in the Mendelejev table 

2. - On the other hand the idea that physical forces propagate in space with a 
finite velocity through the action of a field was introduced by Maxwell and 
Lorentz in electrodynamics. This idea was further developed by Einstein and 
in his relativistic theory of gravitation -perhaps the most beautiful achievement 

in theoretical physics up to our days- the unifying power of the descrip­
tion by the field concept was greatly enhanced, the gravitational field being 

identified with the metric tensor in a Riemannian space-time. 

GFT • B 
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With the development of quantum mechanics and of the principles of 
quantum field theory, physicists were led to associate a field to each 
particle. However, the large nunber of elementary particles which were discovered 
in the fifties discouraged many physicists in their belief of the unifying role 
of field theory. The efforts developed by Einstein to find a unitary theory 
of the gravitational and the electromagnetic field. seemed meaningless to 
quantum and particle physicists since many other fields would have to be taken 
into account in such a unifying theory. It was mainly in the domain of strong 

interaction physics that the notion of field seemed useless. 

The developments in the last ten years which culminated with the 
Salam-Weinberg model of gauge fields which unify electromagnetic and weak inter­
actions and, more recently, the discovery of quantum chromodynamics, restored 
the full theoretical value of field theory. It is believed that the unification 
which we must seek is rather that of the basic forces of nature, rather than 
of the bodies and their constituents. The elementary particles are now reduced 
to leptons and quarks but the number of these admitted basic objects seems to 

be increasing. Instead, the Salam-Weinberg model ooeneci up a new style and a new 
aim, in the spirit of the great unification of physical fields as dreamed of 
by Einstein. Strong interactions are now assumed to be described by massless 
vector gauge fields associated with the colour degrees of freedom of quarks. 
And this theory is expected to reproduce the strong interactions between hadrons, 
although for the moment mathematical difficulties have been preventing an 
early completion of this program. 

Current research actively develops efforts in the sense of a 11 grand 11 

unification of all the basic interactions of nature, such as the Georgi-Glashow 
SU(5) model which attempts to unify the strong, weak and electromagnetic 

interactions. 

3. - We know that the elementary particles are classified according to their spin 
into bosons -particles with integral spin, obeying therefore to the Bose­
Einstein statistics- and fermions particles with half-integral spin and which 

obey the Fermi-Dirac statistics. 
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I will show you now a table {Table I) which indicates the basic physi­
cal interactions between particles. These are in small number : all forces in 
nature result from the interplay of : 1) gravitational interactions which 
are created by and act upon all forms of energy and matter ; 2) weak interactions, 
which act between leptons (electrons, muons, tauons and their neutrinos) and 
also hadrons ; 3) electrom~etic interactions, created by and acting upon all 
particles with a charge, a dipole moment; 4) strong interactions,which 
act only on heavy oetrticles called hadrons. As we said above, it is today 
believed that these interactions may be described in a unified way : massless 
vector fields -the gauge fields- are defined in association with the postulated 
invariance of the theory under gauge transformation and these fields give rise 
after a spontaneous break-down of the synunetry, to the fields of the weak and 
electromagnetic interactions. The strong interactions are assumed to be governed 
by another gauge theory with unbroken synunetry, the colour SU(3) gauge group, 
which introduces eight massless gauge fields, the gluons. 
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T~BLE I - Basic interactions 

strength of 
Interactions Transmitted by 

coupling constant 

Gravitation 
r-L:? m 

2 
spin 2 massless l 

IY e2 '\, o. 2xrn-42 ficl d 
quantum : graviton 

.. 

·weak 
(m c) 2 _5 spin 1 massive field~ 

G.....---E-.r- '\,l.OlxlO 
r 1't.:> !Quanta : \.I+ ,~r, zO 

Gauge fields 

general coordin. 
trans forr.i 

gauge field 

I 

SU(2)~U(l): 

2 1 _2 spin 1 massles_s 
El t t · c a = e "' '\, 10 f1e1 d ec romagne , - 4ifffC m quantum : photon 

gauge fields 
The SU(5) 
model 

defines 
~ 

2 
_g__'\, 10 for hadro- spin 1 massless 
~ nic. matter fields 
~4omentum transfer 
dependent a

5
(q2)for 

quark interaction 
gluons 

24 gauge 
fielc!s 

]

colour SU(3) 
gauge fields 

Supergravity postulates a massless spin 3/2 quantum -the gravitino- in addition 
to the graviton 

TABLE II - Observed fermions 

Display observed 

electromagnetic - - -Leptons weak and e ,ve;µ ,vµ;T , VT 

forces and their antiparticles 
(spin 1/2) 

Baryons weak, electromagnetic nucleons;hyperons; 
and strong forces baryonic resonances 

(spin 1/2, 3/2, ... ) 
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TABLE III - Observed bosons (1980) 

---- -------------- -------...---- ·---------------. 
Photons 

i----- --------- ---------- ---- --- ---------··-----·---------·-----~ 

Hadroni c ~·1esons 

TABLE IV - Quark quantuM numbers 

Flavours Q I 13 
--'-------

.__ ____ 
"--· 

ua 2/3 1/2 1/2 
._._ ________ ----- '--

da - 1/3 1/2 - 1/2 
1----- --- -- -- -----~ 

Sa - 1/3 0 0 

ca 2/3 0 0 

t· ? 2/3 0 0 "a 

ba - 1/3 0 0 

: (?) 

Q = charge 
I = i sospin 
I3 = ~hird.coMponent of 

lSOSpln 

1T, p, K, ¢>, 

D, tJJ, T, etc. 

B y 

1/3 1/3 

s 

0 

eJ=o 1/3 

1/3 I - 2/3 - 1 

1/3 - 2/3 0 

1/3 - 2/3 0 

1/3 - 2/3 0 

B = baryon number 
Y = hypercharge 
S = strangeness 
C = charm 

c b t(?) 

0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 0 1 

0 - 1 0 

Y=B+S-C+b-t 

1 
Q = I 3+ 'Z ( B + S + C + 

+ b + t) 

b = beauty (bottom-ology ; bottor.mess ?) 
t = to~-ology (topness ?) 

Each quark is assumed to exist in three states which differ among themselves 
only by a new quantum number, the colour a = 1,2,3 

-
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0 

µ+ 0 
-

ve -1 
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\) 0 
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-
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L 
\J 

1 

1 

0 

0 

-1 

-1 

0 

0 
--+--

0 

! 

---T 

0 

0 

0 
I 

L 
1 

0 

1 

1 

-1 

-1 

La a-onic lepton quantum number 
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TABLE VI - Basic fermions 

Leptons (ve, e) ; (vii, µ) ; (vl', T) ; ... (?) 

Quarks ( ua, da) ; (ca, sa) ; (ta, ba) ; ... (?) 

a = green, yellow, blue 

TABLE VII - Basic boson fields 

Gauge field 

Gravitational 140 component 
gauge field 

I ----------+-
Weak and e 1 ectro- j Four vector 
magnetic ! gauge fields 

I 
i 

I 

Colour fields 1 Eight vector l ~assless gauge 
___L_ields 

Broken field Quanta 

I 
I 

I • t 
1 spin wo 

l no i graviton 
, I 
l i 

!Three massive vec- ! 
I - j 
!
1
tor fie 1 ds wii , 1 spin one 
ii+ ii ! + 0 

~ , Z and one !w-, Z, 
r~elian gauge mass-!and photon y 
\less field Al1 

I 
i 
I 
I 

no 1 spin one 
! gl uons 
I 

Supergravity introduces a massless spin 3/2 field in addition to the spin 
two graviton. 

The spontaneous breakdown of gauge symmetry to generate boson masses, is 
carried out by certain scalar fields called Higgs fields. Higgs bosons are 
therefore assumed to be also basic particles but they, as well as the 
vector bosons W and Z, have not been observed so far (as of November 
1980). 
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TABLE VIII - Quark structure of hadrons 

' 
I 1) Hadrons are colourless 

i 
: 2) Hadronic mesons are assumed meson field 

to be formed of a pair quark­
antiquark (summed over colours) thus 

TI+= a1u1+ d
2
u
2

+ d
3
u
3 

K+= s1u1+ s2u2+ s3u
3 

where c = 1,2,3 or g,y,b 

I 3) Baryons are constructed out baryon field = 
qlg 91y qlb 

= N 

l 

of three quarks, their field 
wave functions being antisym­
metric 929 92y q2b 

939 q3y 93b 

thus 
A!:!::! u9dysb+ ubdgsy+ uydbsg -

- uddbsy- uydgsb- ubdysg 

TABLE IX - Questions 

I 

Are leptons to be associate:I to quarks as in Table VI or are they 
to be associated to hadrons, observable particles like theM ? 

Are new sub-leptonic particles to be associated to quarks to 
give a unified description of leptons and hadrons ? Are therefore 
leptons point-like or do they have a subtle structure ? Do leptons with 
spin 3/2 exist ? 

Are the fundamental bosons without structure ? And quarks ? 
Is the SU(S) model enough for grand unification ? 
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The classification of observed fermions and observed bosons is 
shown in Tables II and III. 

It is today assumed that the binding of certain basic particles called 
quarks give rise to hadronicmatter. Quarks, with their defining quantum numbers, 
are shown in Table IV. As quarks have not been observed, it is assumed that their 
mutual interaction increases strongly with their distances and they are in this 
way, confined, not to be found in a free state. Observed would be only states 
with zero colour and quarks exist in three different colour states. Besides 
quarks, there exist the leptons, namely, the electrons and electronic-neutrinos, 
the muons and muonic neutrinos and the tauons and the tauonic neutrinos. Both 
quarks and leptons are supposed to be the basic pieces of all matter (Tables V-VI). 
Table VIII indicates the quark structure of hadronic matter. 

4. - The aim of this book is to give a self-contained introduction to the theory 
of gauge fields, which plays a basic role in the description and unification of 
the basic physical interactions. 

The reader will be assumed to know the foundations of quantum mechanics 
Jnd of the special theory of relativity. For the sake of completeness, we dedicate 
the Chapter I to the establishment of the basic equations in particle physics, 
namely the equations for free particles described 

a) by scalar fields ; this is the case of spin zero bosons 

b) vector fields, which describe particles with spin one such as the vector bosons 
(and the photon for massless real fields) 

c) Dirac spinor fields, which apply to particles with spin 1/2, 

d) Rarita-Schwinger vector spinor fields, which describe fermions with spin 3/2 

e) Symmetric second rank tensor fields, which describe particles with spin 2 ; 
the case of such massless tensor field applies to the description of the gravita­
tional field as will be seen in Chapter V. 

In addition, dual or pseudofields are defined and this allows us to 

introduce the currents constructed with Dirac fields and which play a central 

role in the theory of weak interactions. 
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The establishment of these equations can be made in a very simple way 
by postulating in each case, the existence of only one such independent field, 
and of no other field of lower tensor or spinor-rank. The establisment of some 
usual non-linear field equations is also made by a similar method. 

Still in Chapter I , we recall the lagrangeans from which these equa­
tions may be derived and the all-important Noether-theorem. A detailed derivation 
of the conserved Noether tensors is given since Noether conserved quantities, such 

as the energy and momentum, the angular momentum, the electromagnetic current, the 
isospin currents, play a special role in the theory. 

We thought it would be helpful to the reader to have the expression 
of some of these physical quantities, deduced in a detailed fashion from the 
lagrangeans. 

An introduction to the study of the soliton and instanton solutions 
of non-linear field equations which appear in gauge theories, is given ; 
these solutions introduce the important notion of conserved topological numbers, 
a notion which does not follow from Noether's theorem at all, but is rather 
associated to topological properties of those solutions. 

In Chapter II, these notions and equations are applied to the study of 
the electromagnetic interactions. The electromagnetic field is the first example 
of a gauge field and the presentation of Maxwell's theory under the gauge field 
view point is beautiful and instructive. The generalization of this idea, by Yang 
and Mil1s,to the so-called non-abelian gauge fields, was an important step taken 
in 1954, and which ultimately made possible the recent developments in particle 
theory in the last ten years. 

The Yang-Mills gauge field is studied in Chapter IV. Its origins are 
recalled, the field equations and the corresponding lagrangeans are given and 
the important case of the colour gauge field is described. 
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We thought that a study of the gravitational field as a gauge field 
would be important for two reasons : 1) it would be suggestive for the young 
readers to see that there are many conunon features between the gravitation field 
and the Yang-Mills field -non-linearity of the equations, covariant properties of 
certain quantities such as the gauge field ;tsef and its source, similar beha­
viour, from the point of view of covariance, of corresponding equations. Secondly 
it is precisely the unification of the gravitational interactions with the other 
ones -strong, electromagnetic and weak- which presents the greatest challenge 

nowadays. I believe it would be instructive that this treatment of the gravita­
tional field be included in a book dedicated more to the study of the other 
interactions, even at the price of having this Chapter somehow disconnected 
from the following chapters. 

The remaining chapters are dedicated to introduce the ideas and tech­
niques needed to a detailed study of the Salam-Weinberg model, which describes in 
a unified form the electromagnetic and the weak interactions. 

Finally, in Chapter X, we mention the recent attempts at a 11grand 11 

unification of the electromagnetic and weak forces with the strong interactions 
and present an introduction to the study of the SU(S) r.10dcl ,the simplest such model. 

It is our hope that this book, even in its fonn not completely homo­
geneous, due of course to the author's fault but also due to the presentation 
of recent theories still under intensive investigation, it is our hope that it 
will help young graduate students to follow a hopefully clear path which will 
lead them further in the study of particle physics. 





CHAPTER I 

Field Equations, Conserved Tensors and 
Topological Quantum Numbers 
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I. 1 - FREE FIELD EQUATIONS 

Elementary particles are described by fields which obey certain 
equations, the so-called relativistic wave equations. These fields have basic 
properties which follow from a postulated invariance of the wave equations 
under certain groups of transformations, the synunetry groups. The latter are 
suggested by experiment. Examples of these symmetries are the independence of 
the laws of physics from the origin of time and from the position and orientation 
of laboratories in ordinary space. Invariance of the wave equations under the 

groups of time and space translations and rotations leads to the important 
principles of conservation of energy and momentum and angular momentum. 

The most important invariance principle in field theory is the princi­
ple of relativity. It states that the laws of physics do not depend on the 
choice of an origin for a coordinate system and for the counting of time ; 
nor do they depend on the spatial orientation of this coordinate system nor on 
the state of rectilinear and uniform motion of the laboratory. Mathematically, 
this principle imposes that the equations of motion be invariant under the 
proper orthochronous Poincare group. Wave fields are assumed to belong to repre­
sentation spaces of this group1- 12 ) ; their space-time geometrical nature is 
thus determined and the fields can only be scalars, spinors, vectors and 
higher order spinors and tensors under the Poincare group. 

Experiment has shown, after the discovery of a number of elementary 
particles, that there exist fields which, besides their Poincare geometrical 
nature, have internal degrees of freedom. They may be scalars, two-component 
spinors, three-dimensional vectors with respect to certain additional symmetry 
groups related to internal quantum numbers such as isospin, flavor, colour 
and so on. This internal degree of freedom results from the invariance of the 
equations of motion under certain groups of transformations acting on the 
field regarded as an entity in a new internal space - such as the group U(l) 
of phase transformations of complex fields or the group SU(2) of 
phase operator transformations of isospinors and so on. 
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Whereas the Poincare invariance of the equations of field theory is 
universal the invariance under internal symmetry groups is obeyed by specific 
field models as in chromodynamics ; there are also internal symmetries which 
are only approximate, as in flavordynamics. And the recent discovery of a 
mechanism of mass generation by spontaneous break down of certain subgroups 
of an internal synunetry group has been of the utmost importance for the 
formulation of the current unification models of physical interactions. 

In this paragraph, we shall establish the equations of free fields 
with respectively spin zero, spin one half, spin one, spin three-halves and 
spin two by a simple method which consists in postulating, in each case, the 
existence of only one such independent field and of no other field of lower 
tensor or spinor rank. 

a) ~calar field : let us assume that we are given a scalar field ~(x), i.e, 
such that under a proper, orthochronous Poincare transformation of the geometri­
cal frame of reference 

det 

transforms like : 

t = 1, n° > 1 
,I(, 0 - . 

~I (XI ) : ~( X) 

(I. 0) 

We are told then that there must exist no other scalar independent from p(x). 
Now the equipement of space-time analysis gives us the differential operator 
"' - d 0 µ = axµ and the metric tensor 

gµv 0 for µ # v 

900 - 911 = - 922 

Thus we may form a four-vector a ~ and a tensor a av ~. With the latter and µ µ 
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g we obtain a new scalar* 
lJV 

a <P = g aµ a" <P 
l.J\) 

In view of our postulate which forbids another scalar, built out from 
<.P(x), independent from <.P(x), we shall necessarily have : 

a c ~ + b <P = O 

The ratio ~ will be called m2 and this is the Klein-Gordon equation for a 
free field 

2 c <.P + m q> = 0 (I. 1) 

m is found out to be the mass of the particles described by the field. Note 
that we have elected a system of units in which 

i1 = 1, c = 1 

and the constant m2 above has the dimension i- 2 since the Compton wave­
length associated to these particles is 

A = .!_ 
me 

If besides <.P(x), we are given another scalar, p(x) independent from 
~(x) and forbid the existence of a third independent scalar we are led then to 
write 

c <.P = a ~ + g p 

and the requirement that when p(x) is not present we get equation (I. 1) gives: 

(o + m
2

) <.P{x) = g p(x) {I. 2) 

g is the coupling constant, p{x) is the source of the scalar field <.P(x). 

Now we need another assumption, which is rather a quantum-mechanical 
result in the theory of representation of the rotation group and of the Lorentz 
group: a particle with spin s = 0,1,2, ... , ; 5 described by a field with 2s+ 1 

* We stop at second derivatives. A more general equation than (I. 2) is 

F(c}(a + m
2

) ~ (x) = g p(x) 

where F is a function of the operator a ; this is the Pais-Uhlenbeck equation. 
In general, locality and causality properties are lost by such higher-order 
equations. 
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independent components, whereas if s = 1/2, 3/2, ... the number of independent 
components is 2(2s + 1). 

b) ~'ec.tor field: let us now assume we are given a vector field qilJ(x) and 

f_o_Ibi d_t_ti_e_ ex_i_~_1:_~f'!_ce of any sea 1 ar function bui 1 t out of ¢µ (which then would 
describe a spin 0 particle) and of any other vector independent from ¢u{x) 
under the transformation (I. 0) the vector field transforms in the following 
·,1,1 '/ : 

~'µ(x') = iu ~v(x) 
v 

~ith ~~(x) we construct a tensor aa¢u and another aaaAtu. And with this we 

get a vector 

By our assum~tion we must have then 

and I 

(a + m2) ~u = O 

a <P u = o 
lJ 

(I. 3) 

since aµ¢µ is a scalar made with ¢u. This gives us three independent coMpo­

nents for ¢u which thus describes spin 1 particles. 

If we are given two independent vectors, ¢u{x) and jµ(x) and 
forbid the existence of any other independent vector and rule out the existence 
of any scalar then we get 

We could also have another postulate : there exists only a four-vector Aµ(x} 
and no other four-vector can be different from zero, as well as no scala~ 
This gives us the massless free field equations 

{I. 4) 

Massless free fields are described by only two independent field components. 

GFT - C 
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c) Dirac's equation for spin 1/2 field 

If we are given a Dirac spinor ~(x) (together with the matrix 
machinery) which transforms in the following way, under the group (I. 0) 

ip'(x') = D(E) ~(x) D( ) ( i lJV ) 
E = exp - t a £uv 

we see that 

is a vector-spinor and hence 

~ (ylJ Yv _ Yv ylJ) = 0 u\) 

yµ a w is another spinor µ 

If we forbid the existence of any other spinor independent from ~ we are then 
led to the equation : 

(I. 5) 

for a free spinor field. 

In the presence of a source one obtains the equation 

where P is a spinor linearly dependent on ip. Thus 

I 

9 4> tP, or 

P = g Yµ ~µ ip 

etc 

The number of components is here four, due to the existence of negative­
energy states. 

d) Rarita-Schwinger eguation for spin 3/2 fields 

Suppose we are given a spinor-vector ~aµ(x) and say that this is 
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the only independent field of this nature ; suppose further that there exists 
no pure spinor, which would describe spin 1/2. With ~aµ we can form two 
spinors, namely : 

and 

We see then that the equations 

(i yµ a - m} r.J.!a = o 
µ 

y tJJ°' = 0 a. a wa. = o 
a. 

(I. 6) 

describe a field with eight independent components corresponding to spin 3/2. 

The particles with spin 1/2 contained in ~P are transformed away by the 

subsidiary conditions. 

e) Equation for spin 2-field. 

A tensor of second rank cpµv(x} has 16 components.A particle with 

spin 2 must be described by a field with five independent components. 

For an antisymmetric tensor it is not possible to describe a spin 
2 field since it has six independent components and no single condition can 
be imposed to it (the scalar formed with a a $µv would vanish identically 

µ v 
with rplJV antisymmetric). 

Consider then a symmetric tensor 

cpµv = cp vµ 

and forbid the existence of any other indeµendent sywmetric tensor {except the 
source if it is the case of interaction with other fields) as well as of any 
vector or scalar formed with ~µv. We then obtain the following equations : 
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aµ ~µv = 0 (I. 7) 

9 cpl.JV= Q µv 

which reduce the number of independent components to five and these therefore 

describe spin 2 particles. 

f) Equation for spin 2 massless field 

An alternative way of establishing these equations will be illustrated 
for the case of a spin 2 massless field hµv generated by a source Tl.J" where : 

With the field hµv we may construct the following tensors : 

As for massless fields no terms in hµv and gµvh must occur in its equation 
we must have 

where 

is the trace of the field. By differentiation with respect to xµ we get 

a aµ hµv ( 1 - a) + ( d - a) a" a a a B has + ( b + c) a av h = 
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Conservation of the source tensor gives 

therefore the left-hand side of the above equation must vanish identically 
which leads to 

a = 1, d = a 1, b = - c 

So the equation will be 

or 

1 hµv 1 11 VA v ••A 11 v J.JV 
0 ° - b' (aA a~ h + aA a h~ ) + a~ a h - g o h + 

Now we choose a field scale so that the coefficient of o hµv be the unity 
hence b = 1 and : 

{I. 8) 

This equation is invariant under the gauge tr3nsformation 

If WP. then impose a gauge-fixing condition 
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then the equation (I . 8) reduces to 

We then introduce a new field variable 

which then leads to the equations 

a <f>lJV = - K Tµv 

o <f>\.JV = Q 
µ 

(I. Ba) 

We shall see that the Einstein's equation for the gravitational field reduce 
to an equation to the type (I • 8) in the weak-field approximation (Chapter V) · 

g) Pseudotensor fields and currents 

There is an important instrument of the space-time tensor 

machinery, namely the Levi-Civita totally antisymmetric tensor £aByo thus 
defined : 

0 for any two equal indices, 

£0123 = l, 

e:aBy6 changes sign under interchange of two consecutive indices. It allows us to 
define dual or pseudotensor fields and currents which transform under sµate reflec­
tion with an opposite sign as compared to that of the associated tensors. 

In view of the expression for the determinant of a Lorentz transformation: 

we define the following dual or pseudotensor fields, the transformation of which 
under a Lorentz transformation gets {det l) as a factor : 

I) Pseudoscalar field ~(x), the dual of a totally antisymmetric 4th 
rank tensor ~\.JVAn(x) : 
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~·(x') = (det £) ~(x) 

Thus ~(x) changes sign under improper transformations. 

An example is the pseudoscalar 

P(x) = i ~(x) y
5 n(x) 

constructed with two Dirac spinors ~(x), n(x) and their adjoints 

- + 0 - + 0 w(x) = w (x) y , n(x) = n (x) y 

and the definition 

where rµ are the Dirac matrices given in c). The transformation properties 
of the spinors 

w'(x') = D(t) w(x) 

$'(x') = ~(x) o- 1(t), 

(and similarly for n(x)) and 

o-1 yµ D = £µ yv 
v 

show that P{x) is a pseudoscalar. 

II) Axial vector field $ (x), equivalent to a totally antisynunetric 
µ 

3rd rank tensor $vAn(x) by the relationship 

$µ(x) = j! EµvAn $vAn(x) 

so that 

$ 1

11
(x') tµ = (det t) $ (x) 

~ a a 
An important example is the axial vector current constructed with two spinors 
~(x), n(x) : 
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III) Dual tensor field 
rank tensor FAn(x) 

"' F~(x), equivalent to an antisymmetric second 

? (x) = l E , F~n(x) µv c.. µvr.r1 

such as the one associated to the Maxwell field tensor. 

An example is the pseudotensor current 

z:l.IV(x) = ·~(x) y 5 ai.iv n(x) 

Besides the currents P(x), Aµ(x) and :µv(x), the proper tensor currents 

S(x) = 0(x) n(x), scalar 
Vµ(x) = :~(x) yu11(x), vector 
5UV(x) = ~(x) al.JV n(x), tensor 

are the basic tools for the construction of interaction lagrangeansbetween spin 

i particles among themselves and with given tensor fields. 

I. 2 - NON-LINEAR FIELD EQUATIONS FOR A SINGLE SCALAR FIELD 

The equations established in the preceding paragraph are the basis of 
the simplest field theories. 

The recent development of gauge theories has given rise to classical 
non-linear field equations, which have been the subject of much investigation in 

view of the fact that they admit of non-singular solutions of finite total 
energy which are non-dissipative. 

It is well known in quantum mechanics that as time goes to infinity 
a free wave packet spreads out indefinitely. Only for sufficiently small time 
intervals is the spreading of the wave packet negligible and only then may the 
1 atter represent a free particle. 

In general, a solution of a classical field equation is called 
dissipative if it gives rise to an energy density T (x, t) which vanishes 

00 after an infinitely long time 

lim 
t -+ 00 

for a 11 -+ x. 
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This notion of dissipation is a generalization of the following simple 
physical process, in the words of Sidney Coleman : "A stone thrown into a 
still body of water nakes ripples that spread out and eventually die away. The 
stone disturbs the water, gives it energy, but, even if we ignore friction, 
this energy tends in the course of time to spread out over the water. If we 
imagine the water to be infinite in extent. then, if we wait long enough, at no 
point is the water appreciably different from its state before the stone was 

cast. The disturbance dissipates". 

The non-singular solutions with finite energy of the linear free­
field equations have the property of being dissipative. 

There exist, however, some non-linear classical field equations that 
have non-singular non-dissipative solutions. The importance of these solutions 
resides in the fact that the simplest of them are time-independent lumps 
of energy which do not spread out with time. These solutions are frequently 

called solitons in the literature. The lumps provide a description of extended 

objects with a finite energy such as might be the classical limit of hadrons. 
The non-linearity of the field equation implies a self-interaction which is 
responsible for the concentration in space of these lumps of energy. 

Let us examine the simplest non-linear field equations which are the 

subject of interest to particle physics. 

a) Scalar field equation with quartic self-interaction: in the preceding paragraph 

I. 1, item a), the equation (I. 1) was obtained from the postulate that the 

term in all) was not linearly independent from the field itself. This 
equation may be generalized if we assume that a r.p and some arbitrary function 

of ~. F(~), (but not of its derivatives) are also not linearly independent 

(I. 9) 
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F(~) may be either a polynomial or a series in ~. In the first case we write 

N n 
a <P + E A ~ = 0 

n>l n 

The particular case in which : 

leads to the linear equation (I. 1). 

An important equation is obtained when we take 

2 A Al = ~ , A2 = 0, A3 = ~ , A = 0 for n > 3 
3! n 

where A is a constant and <P is a real scalar function. 

It is the equation of the so called <P4 - theory 

(a + µ2) <P + ~ tf'3 = 0 
3! 

(I. 9a) 

(I. 9b) 

which plays an important role in gauge theories (see Chapter VII). The name 
~4 - theories results from the occurence of a term with the 4th power of 
<P in the lagrangean which gives rise to equation (I. 9b). The non inclusion 
of a term in ~2 in this equation means that we impose a syrmnetry namely that 
the equation be invariant under the transformation ~ + - ~' an important requi­
rement in the study of spontaneous symmetry breakdown (Chapter VII). 

b) The sine-Gordon equation : this equation is obtained from equation (I. 9) 
by choosing the function F(~) as a special power series, namely : 

f (q>) = % sin (~~) (I. 10) 
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where ~ and 8 are positive constants 

c r.p + ~ sin (Br.p) = 0 (I. lOa) 

The field is a regarded as a function of t and of only one spacial dimen­
sion. 

Expansion in powers of S r.p gives 

0 (I. lOb) 

the constants a and a s2 correspond to u2 and - ). in equation (I. 9b). 

I. 3 - NON-LINEAR VECTOR FIELD EQUATIONS 

a) The linear Maxwell equations and electromagnetic gauge invariance 

Maxwell's equations for the free electromagnetic field are 

(I. 11) 

where Fpv(x) is the field tensor, expressed as the curl of the potential 
field Aµ(x) : 

(I. 12) 

These are the simplest linear equations for a vector field. 

These equations are gauge-invariant, i e , they do not change if the 
gradient of an arbitrary function A(x), aµ A(x), is added to the field Aµ(x). 
Therefore, A'µ(x), a new field obtained from Aµ(x) by an equation of the type 

(I. 13) 
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gives rise to the same field tensor 

The requirement of gauge invariance of the electromagnetic 
theory {which will be discussed in Chapter II) imposes the tensor Fµv as 
defined in equation {I. 12) as the only second rank gauge-invariant tensor 
obtained by differentiation of the field A {x). 

µ 

In general, given a vector field ¢µ{x) which describes a spin 
1 field with mass m, it obeys, in the free-field case, the equations {I. 3). 
These equations are equivalent to the following ones : 

where 

a ~ llV + m2 cpll = O v {I. 14) 

{I. 14a) 

In view of the mass term, which is proportional to the field ¢µ the equation 
{I. 14) is not gauge-invariant if ¢µ undergoes the transformation {I. 13). 
Maxwell's equations are therefore the only possible second order differential 
equations in Aµ(x) which are gauge invariant. And a comparison of the equations 
(I. 11) and (I. 14) shows that the electromagnetic field is massless. 

However, the free field ¢µ is divergence-less as a consequence of 
the equation (I. 14) with m ~ O, whereas the Lorentz condition aµ Aµ = 0 
has to be explicitly and independently assumed in the Maxwell case : 

in order to reduce it to the pair of equations (I. 4). 
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b) Internal degrees of freedom. The Yang-Mills fields 

The classical electromagnetic field equations are linear. Examples 
of non-linear equations for vector fields are provided by the Yang-Mills gauge 
fields. These are special fields which have a certain internal degree of free­
dom. 

The simplest example of field is a real scalar field : it has zero 

spin (scalar nature of field) and is electrically neutral (the field is a 
real function in classical theory, a hermitian operator in quantum theory). It 
has no internal degree of freedom*. If we consider two real functions ~a(x), 

a = 1, 2, they are equivalent to the pair of complex functions : 

¢(x) = _!_ (¢ (x) + 
l'l 1 

The fields?, ¢*, that obey, like ~ , the Klein-Gordon equation, give rise, 
a 

as we shall see in § I. 6, to an electromagnetic current. The corresponding 
electric charge is a quantum number which is the first example of an internal 
degree of freedom. The latter results from the fact that the theory with these 
fields is assumed to be invariant under transformations of the phases of the 
function ¢(x). Physically this means that the observables do not depend on the 
phase of the field ; the physics constructed with ¢{x), ¢*{x) is the same 
as the physics constructed with the fields ¢'{x), ~*'{x) where : 

(I. 16) 

A being and arbitrary real number. These are the so-called global phase trans­
formations. 

The energy, the momentum and the angular momentum of a field have 

* However, lagrangeans with such a field such as the one in equ. (VII. I) may 
have a symmetry (q> + - q>) which defines an internal degree of freedom for the 
corresponding system. 
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eigenvalues which are related to the geometrical degrees of freedom of the field 

(see §I. 5, 1), 2)). The momentum four-vector is the generator of space-time 
translations, angular momentum is that of Lorentz transformations. They are so 
to say geometrical quantum numbers. 

The electric charge of a field ~a(x) is associated with the reality 
character of the function which describes it and arises from the invariance 
properties of its equations of motion (or lagrangean) under the one-parameter 
group U(l) of phase transformations (I. 16) : 

(I. 16a) 

The field $a(x) is equivalently described by the pair of real (or self-charge 
conjugate) functions $a (x), a = 1, 2 related to $a, ~a* by equations of a 
the type (I. 15). 

There exist fields which have other types of internal degree of 
freedom. The simplest example is given by an isospin doublet ~(x), that is, 
a pair of complex functions w1(x), w2(x) represented as a one-column, two 
lines matrix : 

$(x) (I. 17) 

similar to the Pauli spinor for the spinning electron. We may think of ~l and 
$2 as representing two possible states of a given particle such as the proton 
and neutron considered as different charge states of the nucleon. In the limiting 
case of equal mass for these two particles, experiment indicates that one must 
have the same nuclear physics for the neutron and for the proton, if one makes 
abstraction of the charge of the latter and of the corresponding electromagnetic 
forces. Therefore, in this approximation, the physics in a laboratory which 
describes the nucleon by $(x) as given in (I. 17) is the same as that in 

.1 
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another laboratory which describes the nucleon by ip' (x) where 

~'{x) = U{~) w{x) (I. 18) 

U(~) being a general unitary unimodular matrix which mixes the components ~1 , ~2 
into the new components w• 1, ~· 2 of ~'{x). As U(~) must be a 2 x 2 matrix 
which depends on three real parameters a

1
, a

2
, a

3 
it will be expressed in tenns 

of the identity and the three Pauli spin matrices Tk {which fonn a basis in the 
space of the 2 x 2 matrices 

= (0 1) , T = (0 -i) 
1 0 2 i 0 G-~) (I. 18a) 

For infinitesimal values of the three parameters a
1

, a
2

, a
3 

we have : 

U(~) 
-+-

I + -+- t i nfi ni tesima l = Cl • "2' ' Clk (I. 18b) 

For finite values of Clk, u (c;) will be : 

U(~) = exp 
-+-

(" -+- T ) la•-z. (I. 18c) 

Tk 
If we fix the three parameters, knowledge of the three operators ~ 

determines the transformation corresponding to the values of the ak's. These 
three operators are the generators of the group SU(2) (the identity is clearly 
the generator of the group U{l), (1. 16a) ). 

As will be seen in Chapter IV, the generalization of the transfonnations 
of the group SU(2) to the case when the parameters ~ depend on the point 
of space-time,(the group of local SU(2) transformations) leads us to introduce, 
if the theory is to be invariant under this local group, eertain vector fields 
which are traceless 2 x 2 matrices ~µ(x), expressed in terms of Pauli 



matrices in the following way : 

k 

3 
I: 
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(I. 19) 

The set of three vector fields thus defined, ~ik(x), k 

constitutes the SU(2) Yang-Mills fields. 

1, 2. 3, 

Similarly and more simply, the electromagnetic vector field is 
defined in connection with the postulate of invariance of complex field 
theories under the local group of transformations U(l), the parameter A in 
(I. 16) being now space-time dependent as the function A(x) in (I. 13). 

Another example of Yang-Mills vector fields is provided by vector 
fields which are 3 x 3 matrices and which are expressed as a function of 

>. the generators of the SU{3) group, -,[- : 

a 

8 
I: (I. 20) 

The group SU(3) of 3 x 3 unitary unimodular matrices transforms 
the space of triplets : 

( 

IJJ1 (x) ) 

tlJ(x) = iJi 2(x) 

1P3 ( x) 

(I. 20a) 

into itself (see Chapter IV. 9). These triplets describe, for instance, quarks 
which are assumed to exist, for each flavour, in three different colour states 
with the same mass. It is assumed that the physics of quarks is invariant under 
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the colour SU(3) group, that is, it will be the same for ~(x) and for 
~'(x) such that 

•4J' (x) U(w) ip(x) (I. 21} 

where now 1JJ(x) is the triplet (I. 20a) and U(w} depends on eight parameters 
wa' a= 1, ... 8 and has the fonn 

U(w} I + 
a 

for infinitesimal 

• >.a 
lw z 

U (w} = e a 

8 
r 

1, ... 8 

for finite values of the parameters. 

(I. 21a) 

and 

(I. 2lb} 

The colour Yang-Mills vector field (I. 20) appears in association with 
the construction of a theory which is invariant under the group of local SU(3) 
transformations, the parameters of which are functions of point in space-time, 
wa = wa (x}. 

T A 
The generators, -r- for SU(2), ~ for SU(3), obey certain conunuta-

tion rules Which characterise their respective algebra. The structure constants 
of these groups, namely Eabc for SU(2) : 

[ Ta Tb] . Tc 
""'2"" • ~ = l E abc ~ , a, b = 1, 2, 3 (I. 22) 

GFT - D 
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and fktn for SU(3) group (as given in Chapter IV, § IV. 9) 

~n 
~ ; k, 1 = 1 ... 8 {I. 22a) 

are tools to be used in the theories which admit one of these groups as a 
syr.unetry. 

c) Examples of non-linear field equations involving Yang-Mills fields 

Let us consider a Yang-Mills field 
SU(n) group so that : 

Aµ (x) associated to a local a 

2 N = n - 1 

is a n x n matrix. The N2 - 1 operators 
group and obey the commutation rules 

T are the generators of this a 

where the constants Cabe are the structure constants of the group. 

Clearly, in order to construct an antisymmetric tensor field Fµva(x) 
which will be the generalization of Maxwell's tensor fµv, we dispose not 
only of the curl of Aµa(x) but also of another tensor constructed with the 
help of the structure constants, namely, c b Aµb(x) Av (x). Therefore, we 

. . a c c 
may write 1n general : 

(I. 23) 

where g is a constant. 
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Similarly, the generalization of Maxwell's free-field equation to 
the Yang-Mills case will have to take into account that besides a Fuv (x) v a 
there is another vector which can be constructed with Aµa{x), Fµva(x) and the 
structure constants, namely Cb A b{x) fµv {x). Therefore the Yang-Mills a c v, c 
field equations in the absence of external sources are of the fonn : 

(I. 23a) 

These are non-linear equations for the field Aµa{x). The non-linear 
terms express a self-interaction of this field with itself. 

As we shall see in Chapter IV and in Chapter V, § 1, the construction 
of a field theory invariant under a local group of transformations with 
generators Ta requires the generalization of the differential operator into 
one which is a matrix in the space in which the T's are defined. The generali­
zed differential operate~ the so-called covariantaderivative, has the form : 

D = a I + i g A T 
µ µ µ,a a {I. 24) 

where I is the unity operator and the Ta's are the generators of the 
symmetry group under consideration. 

Depending on the choice of the representation space of the group 
we sha 11 have appropriate matrix representations for these generators· 

In the case of SU{2), the principal reoresentation space is the 
space of two-component isospinors {I. 17) and the generators are one-half 
the Pauli-matrices : 

T 

Ta = -.,P.. for two-dimensional representation of SU(2) 
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If the representation space of SU{2) has three dimensions, the 
space of isovectors, the generators are the usual 3 x 3 angular momentum 
matrices 

Eabc for three-dimensional representation of SU(2) 

In the case of the SU(3) group, the principal representation space 
is the space of complex three-dimensional vectors and the generators are the 

10-33) A Gell-Mann matrices -; : 

Aa 
= """'2'"" for the three-dimensional representation of SU(3). 

Another example of non-linear equations is obtained if one considers 
a complex scalar field ~{x) with a quartic self-interaction and in interac­
tion with the electromagnetic field Aµ(x). The equations must be invariant 
under the electromagnetic gauge group of transformations namely under the 
transformations 

<P(x) + <P'(x) eieA(x) <P(X) 

(I. 25) 

Aµ(x) + A'µ(x) = Aµ(x) - aµ A(x) 

where A(x) is the point-dependent parameter of the transformation. We see that 
the gauge group for fields in interaction with the electromagnetic field intercon­
nects the phase transformations of the complex field mentioned in (I. 16a) (but 
now with space-time dependent parameter A as given in (I. 25)) with the gauge 
transformation of the electromagnetic field mentioned in (I. 13). 

A comparison of the infinitesimal phase transformation 

<P'(x) ={I+ i e A(x)) <P{x) (I. 26) 
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in {I. 25) with similar transfonnations for isospinors as given in (I. 18b) 
with ~ dependent on space-time points, shows that the generator of the 
electromagnetic gauge group is the identity. 

Therefore, the electromagnetic-gauge generalized differential operator 
obtain from (I. 24) is : 

D = a + i e A (x) 
lJ lJ lJ 

(I. 27) 

The equation for the field ~ with quartic self-interaction and inter­
acting with Aµ{x) is obtained from equation (I. 9b) by replacing the invariant 
differential operator a by the gauge-invariant differential operator 

(I. 28) 

where Da is given in (I. 27) 

We may therefore write the equation 

(D Cl 2 * a D + µ ) ¢ + n(¢ ¢) ¢ = O (I. 29) 

as corresponding to equation (I. 9b) for a real scalar field ~. The constant n 
corresponds to the coupling constant A in (9b). 

The associated Maxwell equations for the electromagnetic field in 
inter~ction with the scalar field $ are of the form : 

(I. 30) 

where 

is the gauge-invariant current. 
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Other examples of non linear equations, such as those for 't Haft's 

monopole and for the instanton, are more easily established starting from their 
lagrangians. 

I. 4 - FIELD EQUATIONS AND ACTION PRINCIPLE 

As is well known, the field equations are assu~ed to be derived from 
an action principle. A relativistically invariant function L of the field 
variables $a{x) and its first derivatives aµ ~a(x) is assumed -possibly 
also an explicit function of the coordinates- out of which a functional is 
constructed, the action S 

(I. 31' 

the integration being taken over the whole s~ace. The action principle postu­
lates that the variation of S vanishes when one varies the fields ~a(x) 

in such a way that o wa(x) vanishes at infinity 

o S = 0 for o ~a(x} = 0 at infinity {I. 32) 

The variation of the field wa(x} means that we consider a family of 
fields $a(x ; A) characterised by a parameter A and then : 

o ipa = [~a] o>. 
a >. :l.=O 

We have 
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Now 

f d4x au ( a L o ipa ) = f o ipa a L d a1..l = 0 
acaµ ~a) a(all ipa) 

outer 
surface 

because [ 6 ipll] = 0. 
outer surface 

So for 6 ~a otherwise arbitrary, the postulate (I. 32) implies the field equations 

(I. 33) 

I. 5 - EXAMPLES OF LAGRANGEANS 

a) Scalar complex field <t>(x), <P*(x) with mass m 

(I. 34) 

(I. 35) 

b) Vector complex field <t>lJ(x), <t>lJ*(x) with mass m: 

(I. 36) 



a L 

a L 

a <P* JJ 

- 4') -

0 ~ 

(I. 37) 

0 

These are the Proca equations for the vector field. These equations 
are equivalent to the following ones 

2 II 
(o + m } <i>~ = 0 

a <i>JJ =O 
JJ 

(I. 38) 

There are thus only three independent components of (l)JJ(x) as required 

if this field is to describe a spin l field. 

c) Spinor field $(x), ~(x} with mass rn where 

or 

the matrices yJ.J are such that 

L = $(x} (i ya aa - m} $(x}, (I. 39) 

a L = o ~ ( i ya a - m) t1J ( x} = o 
a(aa ~(x)) a 

(I. 40} 

Lagrangeans which differ by the divergence of a four-vector which 

vanishes at infinity are equivalent since they give the same action. 
Then the following Dirac's lagrangean is equivalent to the above one 

(I. 41) 
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d) Scalar field with quartic self-interaction 

The equation for a real scalar field tt> with a polynomial interaction 
(containing no derivatives of tt>) such as equation (I. 9) is deduced from a 
lagrangean : 

One obtains 

where 

a tD + f (c.p) 0 

F(tt>) = U' (\P) 

For the case of a quartic self-interaction we have 

U(c.p) = i µ2 <P2 + ~ c.p4 
4! 

and equation (I. 9b) for c.p. 

{I. 42) 

(I. 42a) 

Of particular interest is the case where the term in µ 2 is negative. 
As will be studied in Chapter VII § 1, the potential energy U(c.p) (that is, 
that part of -L or of the hamiltonian which is different from zero for a 
constant field) will have two minima for : 

c.p2 = - 6~2 = a2 > 0 , µ2 < O (I. 42b) 

The existence of more than one minimum for the function U(c.p) or of 
more than one zero for the function 

a2 = - 6µ2 > O, µ2 < O 
A 

(I. 42c) 
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in the equivalent lagrangian 

(I. 42d) 

is important in that it makes possible the existence of non-trivial time-inde­
pendent solutions of the equation (I. 9b) with finite energy, for the case in 
which the function ~(y, t) depends on t and only one spatial dimension y. 

e) The sine-Gordon equation 

This is derived from the lagrangean (I. 42) by assuming 

U(~) = - ;. (cos f3 ~ - 1) 
B 

If we want to compare the constants a .-~nd B with those of (I. 42) • 
(I. 42a) we may introduce m2 and n such that : 

so that the sine-Gordon lagrangean is 

and ~ = ~(y, t) depends on only one spatial dimension. 

f) Yang-Mills field 

The lagrangean for a Yang-Mills vector field Aµa(x) in the absence 
of sources from other fields, which will lead to equation (I. 23a), has the 
form : 

FlJ" 
a F uv, a 

Where Fµv • th a is e tensor field given by equation (I. 23) 

(I. 43) 
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It will be seen in Chapter IV that this tensor is generated by the 

algebra of the covariant derivatives (such as given in equation (IV. 16)). 

We give here, as two additional examples, the lagrangean for 

g) Scalar field in interaction with the electromagnetic field, as defined 
by equations {I. 27), {I. 29), (I. 30), (I. 30a), namely: 

(I. 44) 

and h) the lagrangean of the 'tHooft-Polyakov monopole, described by a Yang-r1ills 

vector field Aµa{x) and a set of scalar fields <Pa(x) where the index a= 1,2,3 

means that these fields are isovectors under the group of three-dimensional rota­
tions S0(3) as an internal degree of freedom. It is 

1 1 m2 2 
L = - 4 Fµ~ Fµva + 2 (Dµ $a) (Dµ $a) - ~ ($a ~a - Tl ) 

where 

This gives rise to the equations 

Note that the term in m2 (m2 > 0) 
(I. 42a), (I. 42b), (I. 42c). 

(I. 45) 

2 corresponds to the case µ < O in 
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I. 6 - NOETHER'S CONSERVED TENSORS 

The lagrangean formalism of classical field theory allows the construc­
tion of physical quantities which are conserved, of observables which do not 
change in time. 

Noether's theorem states that if an action is invariant under a 
continuous group of transformations of the fields the corresponding lagrangean 
determines a conserved tensor and an associated time-independent observable. 

If the field transformation law corresponds to a geometrical trans­
formation of the space-time coordinates, the Noether conserved objects are 
a) the energy-momentum tensor density, which is divergenceless, and the 
associated time-independent energy-momentum vector ; b) the divergenceless 
angular-momentum tensor density and the time-independent total angular momentum. 

Other conserved objects, such as currents and charges (electric or 
baryonic or isospin, etc) result from invariance of the lagrangean density 

under continuous groups of transformation of the fields, corresponding to 
internal degrees of freedom. 

In general we assume the action : 

the lagrangean may depend explicitly on the coordinates x. 

Suppose an infinitesimal coordinate transformation(an element of a 
continuous transformation group)is carried out 

(I. 46) 
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and is defined by the parameters k o w , so that 

(I. 47) 

This transformation induces a transformation of the field variables 

(I. 48) 

where we shall set 

(I. 49) 

We see that the transformation law for the fields involve their total varia­
tion 

whereas in (I .9) we used the variation in form o.nly of the field, 0 vP 

(I. 50) 

i.e relative to the same point x. 

We··have the following identity: 

or 

(I. 51) 
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This is seen more clearly if we make use of the parameters 6 wk and identify 
w'a(x 1

) with wa{x 1 
; o wk) and Wa{x) with ~a(x ; 0). Then : 

since the variation 6 refers to a differential of w0 (x) with respect to 
the parameters o wk and these appear explicitly in ~· 0 (x') = ~a(x 1 

; o wk) 

and implicitly through x'. 

We then see that the variation of the action will be 

or 

Indeed we have, assuming that as x ~ ± oo, x• ~ ± oo : 

0 s = J L(wa' (x'), aµ w'acx') ; x') d4x• - I L(~a(x), aµ w0 (x) ; x) d4x 

= f L(~'a(x'), aµ w'a(x'}, x'} d4x• - I L(wa(x'}, aµ wa(x'}, x') d4x' + 

+ J L(~a(x'), aµ Wa(x'), x') d4x• - I L(wa(x), aµ wa(x) ; x) d4x 

= f o L d
4
x' + J L(wa(x'), aµ Wa(x'), x')(l + aA(oxA)) d4x -

- f L(w0 (x), aµ w0 (x), x) d
4
x 

where we made use of the relationship : 



Thus in first order in o wk : 

therefore 

6 s 

or since by the equations of motion 

a L 

we get 

0 s 

As 

oxU ; fuk(x) o wk 

6 ~a ; Fak(x) o wk 

we may write 
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o S ; J a ~ _1._L _ [ Fa _ (a ilia) f v ] + 
A i a(aA ilia) k v k 

+ L f~k t 6 wk d4x 

(I. 52) 

Invariance of the action under the transformations we have considered means 
that 

0 s = 0 
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and hence, for arbitrary infinitesimal o wk: 

a>. 
>.. 

N k = 0 (I. 53) 

where 

N>.. a L ) (a Wal fv - F" ~ - l f>. k k a(a" 1',a) 
\) k k 

(I. 54) 

is the Noether conserved generalised current. The conserved Noether generalised 
charge is 

0 (I. 55) 

I. 7 - EXAMPLES OF NOETHER TENSORS 

1) Field energy-momentum tensor and energy-momentum vector 

Suppose the transformation is space-time translation : 

then 

iµ .a(x.) = ipa(x) 

l this is seen by the fact that if for one variabledone sets f'(x') = f(x) then 

-a ax 
f'(x +a)= f(x) and we see that f'(x +a) : e f(x +a) = f(x), so that 

f'(x) :: e-iap f(x) = f(x - a), p = - i ~ l . 
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Therefore, in the relations 

k w , 

one sets 

P:\(x) = 0 

Therefore Noether's conserved current is the energy-momentum tensor and corresponds 
to the postulated invariance of the theory under space-time translations : 

The energy-monentum vector is : 

and satisfies the equation 

d 

dx0 

2) Field angular momentum tensor 

(I. 56) 

(I. 57) 

Assume the coordinate transformation group to be the infinitesimal 
Lorentz propre orthochrone group 

GFT - E 

xll + e:Y" x 
\)' 
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Compare with : 

since the parameters o wk are now £as, then we have 

Let us write for the corresponding field transformation 

and set 

so that 

where 

µv 
E 

The above form for ~'a(x') is an imitation of the corresponding 
form for x rµ. 

Then the Noether generalised current is the angular momentum 

density 

(I. 58) 
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which is conserved 

This equation gives 

T - T + a µn nu A = 0 (I. 59) 

Let us introduce a tensor F, such that : l\µn 

F - F .Aim .>.nu (I. 60) 

then clearly the tensor 

(I. 61) 

is S.Ymmetric : 

e = e 
J.Jll fl)J 

(I. 62) 

we impose further that 

F = - F :\µn JJAn 
(I. 63) 

so that 

and hence 

{I. 64) 
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From equation (I. 60) we get : 

whence we deduce, thanks to equality (I. 63 ) 

a L a B ~ 
D B;>.n t/J ~ 

{I. 65) 

as a result of equations (I. 61 ) and (I. 63 ) the energy momentum vector may 
be calculated from either flB or aaS 

(I. 66) 

Now if we replace T as given by equation (I. 61) into the angular momentum 
µn 

density M>.µn (I . 58 ) we get : 

a L a, - x e, + --,--
A~ n ~µ a(aA t/Ja) 

that is, in view of equation (I. 60): 

M, = x a, - x a, - aa(F x - F"''µ xn) Aµn µ An n Aµ a).n µ ~A 

So the angular-momentum tensor as defined by 

J = J d
3x M µv oµv 

{I. 67) 

(I. 68) 

(I. 69) 
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is equal to 

(I. 70) 

note that the skew-symmetry of F as given in (I. 63 ) imposes a= 1,2,3 for 
.X=Oin(I.61). 

3) Current-vectors for internal degrees of freedom 

Assume now that the geometrical coordinates are kept unchanged 

fµk = 0 

and that the fields undergo a continuous transformation corresponding to an 
internal degree of freedom. 

That is the case of a change of the phase of the complex field ~a(x) 
by a constant factor : 

(I. 71) 

or, for infinitesinal w 

(I. 72) 

This is the global gauge group with one parameter, U(l). Then the Noether's 
current is the current vector : 

ju(x) = _ a L P1(x) 
a(aµ ~a) 

and as 6 w is here denoted w : 

thus 
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If we want that jµ(x) be hermitian we write 

The charge is given by 

Q = f jo-x) d3x 

and is conserved in time : 

a L wa(x)} (I. 73) 

Examples of Noether currents correponding to invariance of the theory under 
the internal SU(2) and SU{3) groups respectively will be exhibited in 
Chapter IV. 

I. 8 - CONSERVED NOETHER TENSORS FOR SPECIFIC FIEL~~ 

1) Scalar complex field 

The lagrangean is 

L = (au cp+)(aµ <P) - m2 1/ q> 

Invariance under space-time translation defines the energy mo111entum tensor 

(a8q>) + h.c. - L gaB = 

(I. 74) 

which is symmetric in a, a. The energy momentum vector is 

(I. 75) 

from which we get the hamiltonian 

(I. 76) 
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with 

rr ( x) a0 
<P 

The linear momentum is : 

k I 3 · P = - d x { rr + a k <P + ( a k<P) + rr } (I. 77) 

Invariance under the Lorentz group detennines the angular momentum which is 
purely orbital: 

(I. 78) 

so that 

(I. 79) 

the current will be 

(I. 80) 

and the charge 

(I. 81) 

2) Complex vector field 

lagrangean : 
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The energy - momentum tensor is 

f1B = 

It is not symmetric ; the symmetric tensor e~8 will be according to 

equations (I. 61 } and (I. 62 ) 

where 

so 

Therefore 

but 

(I. 82) 

(I. 83) 

(I. 84} 
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or 
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e = gf + a c.rP·+ a c.pa+ 
un µa n n 

Q:? -Lg+ 
Yµa im 

e =~+ (a rna - aa rn) + ~+ aa.n + h.c. 
µ n µa n ...... ......n µa ...... n 

~ + Q:?a + wa+ ~ 
pa Y n n ua -

- L g + m2 (•n + rn + .n + c.p ) + <§7 + µn ...... µ ...... n ...... n u aµ 

+~a+ 
n 
~ +~a+ <§' 

aµ ri µa 

So the synunetric energy-momentum tensor is 

+ a a+ 
6 un = <i/ µa <i/ n + <§7 n CL? + 2 ( + + + ) + 

Y µa m lP µ c.pn lP n <Pu 

(I. 85) 
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where we have taken into account the equations (I. 37). 

We know that it is indifferent to calculate the energy-momentum vector 
from 1'18 or from e tlB, accordi nq to equation (I. 66) . 

Define 

whence 

~le have for the hamil toni an density : 

(V'Oµ+ ~ Oµ 
Too = ~ ao <P + 30 $ + - L 

u µ 

1T 
µ 

a L - (a <P - a $ ) 
0 µ lJ 0 

.From the equation for irk we get 

or 
-+ 

- 'TT 

From the field equations : 

(2:/µV 
avy 

we deduce for $ 0 

+ m2 
$\J = O 

therefore,from(I. 89) we are able to express <Po in terms of -; 

(I . 86) 

(I. 87) 

(I. 88) 

(I. 89) 

(I. 90) 

0 1 -+ -+ 
$ = - :2 (V • n) (I. 91) 

m 
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So from (I. 89) we get : 

CL? ok 
We now proceed to replace <Po and ~ in equation (I.86) by expressions 
(I. 91.) and (I. 88.) respectively, which gives : 

r°o _ -+ + -+ 2 
-TT •n-;;f -++ ;t ;t -+ 1 ;t -++ 

TT • v (v • rr) - -:-z (v • n) 
m 

(V • ~) + 

(I. 92) 

+ (v x <P + ) • (v x <P> + m
2 tP + • iP 

so that, after a partial integration we obtain the harniltonian : 

H = I d3
x T

00 
= I d3x { iT + • iT + 7 cV • iT + ) cV • iT) + cV x iii+ ) • cV x iii ) + 

2-++-+} + m <P • <t> {I. 93) 

The linear momentum is : 

with 

that is, according to (I. 88 ) 

(I. 94) 
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The angular momentum tensor density is, according to equation (I. 58): 

where 

L = x T - x T Aµn µ An n Aµ 

Thus the spin vector is : 

S = J d3x { [; + x (p] + [ (p + x ; } } (I. 95) 

3) Spinar field 

i { -L = "Z tlJ(y a tlJ) - (a ~ • y) $ }- m $ ip 

Energy-momentum tensor : 

(I. 96) 

- { ~ [ ~ ( y • a) ip - ( a ~ • y) tJJ J -m ~ 14' } gas 

The symmetrical tensor turns out to be 

9 = ! ( raB + TBa) 
cxB 2 

Hamiltonian : 

(I. 97} 



where 

-+ 0 -+ 
a :: Y Y 

B = yo 

Linear momentum : 

pk :: I d3x .,.+ c . ~ ) 
'¥ - 1 Ok tP 
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(I. 98) 

The angula~ momentum density is, according to equation (I.58) 

(I. 99) 

where to the last term of equation (I. 58) we have added its hennitian conju­
gate. 

Therefore the angular momehtum tensor is 

(I. 100) 

with 

] 1 ' 
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Thus the ordinary angular momentum has the form (after a partial 

integration in Lk1) 

{I. 101) 

The current of the spinor field will be, according to (I. 73) 

(I. 102) 

whence the charge 

(I. 103) 

These will refer to electric charge or the other conserved quantum numbers such 
as baryon number, lepton number, etc. 

I. 9 - SOLITON SOLUTIONS OF CLASSICAL NON-LINEAR FIELD EQUATIONS AND TOPOLOGICAL 
QUANTUM NUMBERS 

As stated in (I. 2), there exist solutions of classical non-linear 
field equations which behave like stable lumps of finite energy which propagate 
without diffusion. The most important examples of these solutions are the 
so-called topological solitons. They may exist only for fields which have an 
internal degree of freedom. It is convenient to study the case of fields 
defined on a Minkowski space with D spacial dimen~ions and one time dimension 

D 
E 

k = 1 
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A theorem called Derrick's theorem, states that there exist no time­
independent non-singular solutions for a scalar field theory described by the 
lagrangean 

where U {~) > O and U (<P
0

) = 0 for the vacuum states, except for D = 1. 
The theorem applies to several such scalar fields. 

Research has therefore been carried out for different types of non-
1 inear equations and for different possible or convenient values of D. For 
the simplest example of the soliton solution, that of the scalar field with 
the lagrangean (I. 42), D = 1, the solution is called the kink. Other examples 
are the vortex solution for fields defined in a Minkowski space with D = 2, 
these fields being those in the lagrangean (I. 44) with µ 2 < 0 ; the 
monopole or hedgehog solution discovered by't Hoft and Polyakov, corresponds 
to the lagrangean (I. 45) ; the instanton is a solution to the equations derived 
from lagrangean (I. 43), for pure gauge fields, but for an imaginary time 
coordinate. 

The internal degree of freedom of the field gives rise to an 
internal field space. It turns out that the solutions -the manifold of the 
internal field space- can define a non-trivial mapping onto the manifold of 
the spatial D-dimensional space ; a trivial mapping is a correspondence that 
maps all points of one manifold into one single point of the other. Now 

each mapping is characterized by an integral number which defines the so-called 
topological charge. The vacuum states have vanishing topological charge ; a field 
defined by a solution with non-vanishing topological number is stable, cannot 
decay into the vacuum. As we shall see in some specific examples, the topolo­
gical charges are absolutely conserved. 
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Topological quantum numbers are therefore concepts associated to the 
topological structure of the lump solutions and have nothing to do with Noether•s 
theorem. The study of the maps between the internal field space manifold and 
the manifold of the spacial D dimensional space of the theory, is part of a 
branch in mathematics called theory of homotopies. 

Two continuous mappings f(x), g(x), each from a manifold Mx into 
a manifold MY are said to be homotopic if there exists a family of continuous 

maps H(x, t) depending on a parameter t defined in the interval (09 1) 

such that 

H(x, o) = f(x), H(x, 1) = g(x) (I. 104) 

The set of maps H(x, t) for the different values of t are so to say the 

possible configurations of the function f(x) [or g(x)l in the act of being 

continuously deformed into g(x) [or f(x)]. If f is homotopic to g by H 
H : f ~ g and if g is homotopic to k by L : L : g ~ k 

then the map Wcx.t) = ~ : 
(x, 2t), 0 ~ t ~ ~ 

1 (x, 2t - 1), ~ ~ t < 1 

wi 11 make f homotopi t k CL? . c 0 : & : f ~ k ; homotopy is thus an equivalance 
relation. Homotopically equivalent maps form a class {f}. The set of homotopy 
cl asses forms a group A 1 . . . · n examp e is provided by maps from the closed line 
inte~val (0, 1) with the extremal points O and 1 identified, into an 
encl1dean plane without th .. . e origin, a given point y in the plane being 
associated to the point 0 or 1 of the interval, of(O) = f(l) = Y. The 
maps from (O, l) (or a circle s1 with a point x on its circumfe~ence 

0 
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identified with the point (0 , 1) into the above plane may be represented by 
closed curves starting and ending at y . The loops which avoid the origin 

0 
may be deformed to the point y ; therefore the set of all such loops fonns 

0 
the identity class {e}. The loops that enclose the origin once in a certain 
sense, for instance clock wise,form a class designated by {l} ; the class {n} 
is the set of loops which enclose the origin n times in correspondence to 
the interval {O, 1). The number n is called the winding number and is an 

exanple of a topogical number (negative numbers correspond to the loops which 
enclose the origin in an opposite sense). 

Other examples will be found by the reader in the literature which 
he 1s invited to study. 

Before g1v1ng some examples here we shall show Derrick's theorem. 
If ~s{x) is a soliton solution of the lagrangean (I. 42) its energy will be 
given by the hamiltonian : 

If we change x into a x, H will be expressed as 

As the solution energy must be stable under arbitrary variations of the field 
we have, in correspondence h b l h to t e a ove sea e c ange : 

o H ] lra =O 
a = 1 

GFT-F 
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or 

(D - 2) H l + D H 2 = 0 

which is only possible for D = 1 since H1 > 0, H2 > 0 

Let us therefore consider 

a) The kink solution and the kink quantum number. 

The kink lagrangean is : 

where ~ = ~(x0 , x) since the number of space dinensions is restricted to one 
by Derrick's theorem. 

If we add a constant term to L, namely, we may write 

sum over µ = 0, 1. The field equations are, from the lagragean ~ : 

2 2 2 3 (a - a - m ) ~ + A ~ = o 0 x 

(note the sign of the tenn in m2). 
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A time-independent solution of this equation is such that 

11 2 3 0 q> + m 1.P - A q> = 

The minimal energy solutions are 

- m q>vacuum - ± ./'>:. (I. 105) 

which define the two classical vacuum states . The kink solutions are 

tpki nk ( x) ± ...!!!... tanh mx 
anti-kink ./'A ./Z 

(I. 106) 

the + sign corresponds to the kink, the - sign to the anti-kink. The energy of 
the kink is 

The Fig. I. 1 gives the form of the solutions. The kink tends to 
m 

+ IX ' a value of one of the vacuum states, when x ~ + m, while it tends 

to - m 
IX ' correspond; ng to the other vacuum state as x _. - w. 
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-..--:-.:: -=-.- - - - --
antikink x ----------- -- - ------:~::..-. 

Figure I. 1 

The energy density is represented in Fig. I. 2 

x 
-2 -1 1 2 

Figure I. 2 
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and the energy is seen to be concentrated around the origin. What is the 
internal degree of freedom here? It is given by the invariance of the 
lagrangean under the reflection $ ~ - $. 

The homotopic mapping in this case is the correspondence between the 

two vacuum states ± ~ and the points x = ± oo as seen in Fig. I. Thus _!!!_ 
~ ~ 

corresponds to x = m for the kink solution and to x = - oo for the anti-kink. 

There exists then a topological number which, if it is equal to 1 

for the kink it will be -1 for the anti-kink and zero for the vacuum states. 
We may define it as : 

k _/'AlJCX) d<P /Al[ 1 - m ~ -CX) dx ax= m ~ q;(oo) - tp{-oo) (I. 107) 

which is the charge 

(I. 107a) 

of the current 

(I. 107b) 

where 

€01 - €10 = 1 

Eoo = Ell = O 

For the kink 

k 1, 

for the anti-kink 

k = - 1 
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and for the vacuum states 

k = 0 

The topological current k is conserved 
\J 

a kl.J = o (I. 107c) 
1J 

and so the topological number k is absolutely conserved - a kink cannot 
decay into a vacuum. 

b) The vortex solutions and the winding number 

The second example of topological number is the winding number asso­
ciated to the vortex snlutions of the equations for the complex scalar field 
<t>(x) in interaction with an electromagnetic field defined by the lagrangean 
(where the number of spatial dimensions is two) 

(I. 108) 

with 

(I. 108a) 
D<t>=(a +ie A)<t> 

1J µ µ 

The field equations are 

* m2 o oµ <f> = - n ( <t> ct> - - ) <t> 
µ n 
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* 11 * lJ * ( 4> all 4> - 4> a.. 4> ) - 2 e A <t> 4> 

These equations are gauge invariant under the U(l) group of phase transfonnations. 

The name vortex solution comes from the theory of superconductors. 
The Meissner effect is the fact that if an external magnetic field has strenth 
smaller than a certain critical value H , then the field cannot penetrate 
. . 0 
ins1de the superconductor ; if H > H the field can go through a kind of 

0 
hole through a superconductor of type II and there is a magnetic flux across the super-
conductor. These are called vortices of magnetic flux which is quantized. 

The above equations, as shown by Nielsen and Olesen, admit of 
vortex solutions. The magnetic flux quantum number is the winding number 
which characterises a mapping between the set of vacuum states and the two­
dimensional geometrical plane. To see this, con6ider a magnetic field B in 

the z-direction and a circle c around the origin in the plane (x, Y) over 
the circunference of which, C', the current is zero. From the equations for 
the magnetic field above we deduce the value of the vector potential A as a 
function Of the current J, that is 

e j = e i ( <t> V <f> * - <f> * q 4>) - 2 e2 A <f> * <t> 

gives 

A=--
* 2 e <t> <t> 

at · 
points where j = O (such as the circunference C'). If we set 

<t> = f(r) e1 x(e) r
2 = x2 

+ y 
2

' tan a = * 



- 72 -

then the magnetic flux is, through the circle C (r fixed) 

fl ux = f B dx dy = 1 A • dx = ! 1 dx • 9 x c Tc· e Jc• 

that is 

1 [ J 27T n flux = e x(27r) - x(o) = -e- ' n = 0, ± 1, ± 2, ... (I. 108b) 

The fact that the field $(x) ~ust be single-valued imposes the quantization 
of the flux. Thus the number n arises from the map of the circle in the 
x, y plane on the circle described by the phase X· 

The field energy (per unit length) 

H = J dx dy i \ B2 
+ cD $) • * cD $) + ~ ( <!> * $ - ~) 2 I 

will be finte if ~ tends to its vacuum value ¢-+ eix ...!!!.. at infinity and 
rn 

ID ~I -+ 0 and B-+ 0. If B-+ O asymptotically, A will tend to a purely 

gauge form A -+ v a : 

We see that the asymptotic solutions are characterized by a mapping between the 
circle at infinity on the (x, y) plane and the phase of x(e) of the 
vacuum states of the field $. When one describes a circle in the (x,,Y) 

plane the phase x(e) can change from o to 2tr n. The number n is the 
winding number characteristic of each homotopy class in this map. 

It is to be noted that the electric charge e in equations (I. 108a) 
and (I. 108b) is the field coupling constant, which we may designate by ef. 
It is related to the particle electric charge ep by the re~ation ef = i ep 

(see remark at the end of Chapter II). Thus Planck's constant is implied in the 
quantisation of the flux (I. 108b)(see Coleman24 >). 
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c) The 't Hooft-Polyakov monopole 

Consider the lagrangean 

of an isovector ~a in interaction with an isovector gauge field Aaµ' the 
internal symmetry group being the S0(3) group, where 

The classical field equations are 

D Fl-IV Dµ 
v a - e Eabc <t>b ~c 

(I. 109) 

A solution, corresponding to a magnetic monopole was found by 't Hooft 
and Polyakov. By introducing the following definitions : 

B = <t> A u - a µa 

and 
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this solution has the fonn 

and is the magnetic field of a magnetic charge 

'V 
The dual F of the field F is 

~v µv 

1 at the origin. 
e 

F = l e: pxB - 1 e: e: 1 a°' /}.b aB ~ µv ~ ~va.B - Te µva.S abc '+'a q> c 

so that the dual current is 

This is a conserved current a *jµ = O. It is the magnetic current, which does 
µ 

not follow from any application of Noether's theorem to the lagrangean. The 

magnetic charge is 

( L 110) 

Integration gives : 

where the integration is over a spherical surface in the limit of infinite 
radius. This is 4u times an integral number so that 

Q =41Tn 
magn e c 1. uoa) 
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The integer n is the so-called Kronecker index of the map between a two-dimen­
sional sphere in the (x, y, z) space and a two-dimensional sphere in the 
{¢1, ¢ 2, ¢3) space. 

The 't Hooft-Polyakov monopople solution exists only for non-abelian 
gauge groups sue~ as S0(3) and distinguishes itself from the case of the abelian 
group U{l) in which case the magnetic monopole has a string singularity, 
the Dirac magnetic monopole (see Chap. II,§ II. 5). 

d) Instantons 

If we consider the Yang-Mills gauge fields Aµa(x) where the inter­
nal index a = 1, 2, 3 is associated to the SU(2) group, the lagrangean for 
this field in the absence of other sources is : 

where 

The equati· · ons of motion are 

or 

Dv ; ab Fb" = 0 

if the co · ,," variant derivative on the isovector Fb is 
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Let us define the matrix fields 

Ta 
A =A ~ µ µa c. 

T 

F ::::F -:.=a A -a A -ig[A,A] µv µva c. v µ µ v u v 

then the field equations will take the form 

{I. lll) 

The first regular solution investigated of this equation, with 
spherical symmetry is of the form 

. 2 1 
A {x) = - 1 r u- {x) a u{x) 

µ 7+7 µ 
(I. ll2) 

where 

{I. ll2a) 

u{x) = ~ (x4 - i x · ~) 
and B is a parameter. Here we have considered an imaginary time coordinate 

x4 = i XO 

For large r, Aµ{x) tends to the form g-l a g{x) which is a pure gauge 
µ 

since it gives F = 0 in the limit r + oo : µv 

r + oo, (I. 113) 
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The action of this field in Minkwoski space is 

which is equal to : 

where we define 

Now in Euclidean coordinates, that is, with the choice x4 x0 we have 

3o = 1. ~4 ~o _ . A4 Fok _ 
1
• F4k __ ,· E k 

Q , n - - 1 t a - - a - (4)a 

hence 

The euclidean action is thus taken to be 

(I. 114) 

It is positive definite and the condition that Faµv ~ 0 as r ~ ~ 

is a condition for s to be finite; this is satisfied, as stated above, for 
Aµ a Pure gauge. 

3 Now we see that asymptotically there is a correspondence between the 
S-sphere Of the euclidean (xl, x2, x2, x4) space with radius r given in 
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(I. 112a) and a sphere s3 in the internal space which is equivalent to the 
group SU(2) which is the set of all matrices 2 x 2 of the form : 

( 

a4 + 
A = 

i a, 

such that 

The function u{x), (I. 112a), maps the sphere s3 of the euclidean four-dimen­
sional space on the space of the group SU{2), which is also a sphere s3

. Note 
the difference between this map and that defined by the trivial pure gauge 
Aµ= 0 {both this and the asymptotic Au given in {I. 113) lead to a vanishing 
field F and thus define vacuum states). The trivial gauge A = 0 maps 
the eucl~~ean s3 sphere into a single point of the internal s~ace and there­

fore is defined by the identity with winding number equal to zero. 

The topological charge is given by : 

{I. 115) 

where 

"' F = l e: F 
µv "2' µvaS cxS 

{note that µ, v = 1, 2, 3, 4 and that in euclidean space there is no differen­
ce between contravariant and covariant tensors). From the inequality 

1 f 4 "' 2 -r d x Tr {F F ) > 0 
t:. UV µv -
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it follows that 5 (I. 114) has a lower bound detennined by the topological 
charge : 

S > 8n2Q 

7 
The lower bound is attained by 5 for self-dual or anti-self-dual fields 

'\, 

F =±F 
l.JV l.JV 

It is these solutions that are called instantons or anti-instantons. 

The integrand is a total divergence : 

'\, 

Tr (Fuv Fuv) = aµ Jµ 

Ju = 2 £µva~ Tr (Av aa A6 - ~ Av Aa A6) 

for regular A 's h h A ~ ~ A u sue t at aa as µ = OB oa µ. 

where 

Therefore 

2 
Q = ~ p J (x) d aµ 

16n 
5

3 µ 

d 0 u is the surface element of the sphere 3s. 

(I. 116) 

The integrals (I. 114) and (I. 115) converge for the asymptotic 
behaviour of Aµ in (I. 113) and in this case it is shown that Q will be of 
the form n g2 where n = o, ± 1, ± 2, ... is the winding number of the 
homotopy class of the mapping 53 ~ 5U(2). 
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We mention that the importance of solutions such as the instantons, 
expressed in spaces with an imaginary time coordinate is tied to the fact that 
only in such euclidean space integral fonns essential to define generating 
functionals of Green functions are well defined. In such theories the physical 
Green functions result from the fonner by analytic continuation. 

We invite the interested reader to consult the literature 24- 38 .we hope to 

have arisen his interest in the question of topological quantum numbers and 
soliton and instanton solutions of the non-linear equations of gauge field 
theories. In these theories, "the topology of the internal synunetry group 
conspires with the topology of space-time in such a way that particularly stable 
structures {for these solutions) appear", in the words of Hans Joos. 

PROBLEMS 

I - 1. a) Establish the conditions on the matrix D(t) which transforms a Dirac 
spinor ~(x), ~'(x')= D{i) ~(x), in correspondence to a proper orthochronous 
Lorentz transformation so that Dirac's equation be invariant under these trans­
formations. 

b) Give the twenty - six equations which are satisfied by the thirty two real 
matrix elements of D(i). 
c) Show that yo D+(t) yo = - D- 1(t) in the case of heterochronous transformations 
(R.00 2 - 1). 

d) Give the equation and the transformation law of the adjoint spinor ~(x) 

I - 2. A- Deduce the transformation laws under proper or improper orthochronous 
Lorentz transformations a) of the dual tensor field F' (x) = -l E 0 F'16·(x) 

µV ~ µVCXµ 

of an antisymmetric tensor pie ; b) of the following Dirac bilinear forms in 
the spinors $(x) and n(x) : 

S(x) = ~{x) n{x), 
µ - µ V (x) = ~(x) y n{x), 

Aµ(x) = ~(x) yµ y 5 n(x) 

sll"(x) = ~(x) all" n(x) 

P(x) = i ~(x) y5 n(x) 
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B- a) Deduce the infinitesimal and the finite forms of the matrix D(t) in 
terms of the Lorentz transformation parameters a = g gv 0 ta, gAB and the 

llV llCl =' I\ 

y-matrices. 

b) Find the four Dirac matrices in the Majorana representation in which all their 
elements are 0, + i, - i, that is 

(ytJ) * = - ylJ 

where the star means complex conjugation. Write the representation in which 

2 

~ ) 
c) Show that if a (Majorana) spinor is chosen as real in this representation, 
it will remain real in all Lorentz frames. 

1 - 3. Show that the following equation proposed by Rarita and Schwinger to 
describe free vector spinor fields ~µ(x), 

is equivalent to Dirac's equation for ~ll and the subsidiary conditions given 
in equation {I. 6), namely : 

(i Ya aa - m) ~µ 0, 

Yµ ~µ 0, 

() ~µ = 0 
µ 

1 - 4· a) Consider a two dimensional Minkowski space-time (one time, one space 
coordinates). What are the possible forms of Dirac's equation for a free spinor 
(with h . o d 1 ow many components) ? What are the matrices correspond1ng to Y an Y ' 
say? Is the commutation relation j (yµ yv + yv yµ) = gµv where g00 = - gll =l, 

gik = 0 for i 1 k, still satisfied ? What is the matrix corresponding to 
y5 ( s)+ s s 2 s s ' Y = Y , (y ) = r, y y = - y y , µ = O, 1 ? What are the possible 
conserved currents ? What are ~he equ~tions for massless spinors, for left­
handed and righ-handed components ? 

GFT. G 
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I - 5. A scalar field <P 
defined by the term L' 

has a non-linear interaction with a spinor field ~ 

in the lagrangean 

L = L
0 

+ L' 

where 
L 1 ( ii .., 2 2 ) 1 - ( . a "' II.A ) 1 ( 1- ( "' -;- ) µ + M ;;, ,,, 0 = 2 a <P 0 ii <P - m <P + 2 w 1 y a rt - ,., •J1 - 2 0 µ \il y 't', 't', 

L' 

g and K are coupling constants. 

Find a) the equations of motion for <P, ~, ~ ; b) the energy-momentum tensor 
of the system ; c) the hamiltonian as a power series in K ~. 

I - 6. Calculate the energy of the anti-kink solution of the equation 

I - 7. Show that the time-independent function of the coordinate x 

<Po(x) = ~ arc tan {x ra) 

is a static solution of the two dimensional sine-Gordon equation 

( 2 2 ) a. a 0 - a x <P (x, x0 ) + B sin B ~ (x, x
0

) = O 

and that the corresponding energy is : 

H _ 8 ./0. 0-7 
I - 8. Show that the equation of Probl. I - 3. is a particular case of the family 
of equations : 

\<i y• a-m)gaB_ iA (yaaB+laa) +ya [s (i y. a)+ cm]yB!ipB= O 

where the constants A, B, C satisfy conditions so that equations (I. 6) are 
satisfied. a} What are these conditions ? 

b} For what values of A, B, C is the above equation invariant for m = 0 under 

the gauge transformation ip' _ = ip + a m where <P is an arbitrary spinor ? a. a. a,'t' 

c) Show that with the definition of y5 in § I - 1. g one has : 

~aBµv y5 YB = i ~Ya Yµ Yv - 9µv Ya - 9µa Yv + 9va Yµ I 



CHAPTER II 

The Electromagnetic Gauge Field 
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II. 1 - FIELD INTERACTIONS 

The examples given in the preceding paragraphs referred all to free 
fields. Physical phenomena, however, are due to interactions ; therefore we must 
seek how to construct the interactions among fields. These may be defined by 
adding to the free field lagrangeans convenient Poincare-invariant terms which 
depend on both fields. Thus for an interaction of a scalar field with itself 

* we have the lagrangean 

µ + 2 + n + 2 
L = a q> aµ q> - m q> q> - '2"{q> q>) 

which gives rise to a non-linear equation of motion for q> 

2 + {a + m + n q> tt>) q> = 0 

(II. 1) 

(II. la) 

An interaction between a scalar and a spinor field may be described by a tenn 
f ~ ~ q> so that the lagrangean of such a system is : 

- . 1 µ 2 2 
L = ~(1 y • a - M) ~ + 2 (aµ q> a q> - m tt>) -

>. 4 -
- 4! q> + f 1" 1" q> (II. 2) 

where f and A are coupling constants and q> is real. 

In the beta-decay of the lepton-muon : 

µ-+v +e+v 
µ e (II. 3) 

it is known that this process is described by a coupling of two expressions, the 
so-called weak currents, for the µ-field and for the e-field : 

ta(µ) = vµ(x) ya(l - y5) µ (x) 

ta+(t) = e(x) ya(l - y5) "e(x) (I I. 3a) 

* A Following the convention usually adopted we reserve the term 4 ! for the cou-

pling constant of the quartic self-interaction of a real scalar field (the 
denominator is convenient for combinatorial reasoms in the study of Feynman 
diagrams for this theory). For complex fields we usually denote the coupling 
constant by n. 
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so that the corresponding lagrangean has the form 

L = µ(i y • a - m )µ+e(i y ·a- m) e + µ e 

+ v i y • a (v ) + ve i y • a (ve) + 
µ µ L L 

(II. 3b) 

where the two neutrinos 
polarized 

"µ' "e are assumed to be massless and left-handed 

1 5 
"L = "2' (1 - y ) v 

(l 1 2 3 y y y y 

The electromagnetic interaction with an electron field is described 
by the l agrangean : 

L = 1 Fµv F + e (i y • a - m) e - e j Aµ -1 ~ µ (II. 4) 

where 

jµ (x) = e(x) yµ e(x) 

(I I. 4a) 

and ~Aµ (x) is the electromagnetic field; the corresponding equations of motion 
are : 

(i yµ D - m) e (x) = O, 
µ o = a + ie A µ µ µ 

(I I. 4b) 

We shall now study the important notion of gauge fields and show 
that the electromagnetic field is the simplest example of a gauge field. 
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II. 2 - THE ELECTROMAGNETIC FIELD AS A GAUGE FIELD 

We have seen that the lagrangeans of complex fields ipa(x) are 
constructed in such a way as to be hennitian since the observables derived from 
the lagrangean,such as the energy-momentum tensor, the haniltonian, etc, must 
have real eigenvalues. They are therefore invariant under the global gauge group 
U(l), that is if 

lJla{x) .. ipa • (x) e iwipa.(x), 

(II. 5) 

w = real constant 

then 

(II. 6) 

The notion of gauge field first arose from the postulate that these 
lagrangeans be also invariant under the local gauge group, that is, when the pa­
rameter w depends on x : 

W = W(x) 

This means that we must be free to choose a phase for IPa(x) in each point of 
space-time which is not necessarily the same when we change the point ; and that 

the observables do not depend on this choice. 

Let us for convenience write : 

w (x) = e A (x) 

where e is the elementary electric charge. Under the transformation 

~a+'(x} = U*(A(x}}ipa+(x}, 

U (A(x}) = eieA(x} 

(II. 7} 



- 87 -

the derivatives of the field will transform as follows : 

au ljla, (x) = U (A(x)) au ljla(x) + [au U(A{x))}a(x) 

au ljla+, (x) = U*(A(x))au 1/,a+(x) + [au U*(A(x))}a+(x) 

and products of the form : 

are not invariant : 

. (II. 8) 

(I I. Sa) 

What is the change of the lagrangean under the transformations 
(II. 7) ? We have, for an infinitesimal transformation : 

o $ = i e A(x) $(x), 

o (aµ $) = i e A(x) aµ $(x) + i e w(x) aµ A(x) 

so that 

o L =!...!:. o tJ1 +a L o (aµ w) + h.c. 
a w a(aµ lJI) 
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But as L is invariant for A constant 

o L = O for A(x) = w = canst. 

then 

Therefore we see that under the group (II. 7) L changes as follows 

{see equation {I. 46)) : 

o L = - e j { x) au J\ ( x) ( I I. 8b) 
l.J 

The reason for the non-invariance of the lagragean under infinitesimal or 
finite local phase transformations such as (II. 7) is the occurence of the term 
in a U(x} in the derivative of ~' (II. 8). A generalization of this lagrangean 

lJ 
which remains invariant under the group of local transformations (II. 7) will be 
obtained if we can find a generalized derivative of ~' Dµ ~, such that Dµ w 
transforms like ~ : 

As the derivative D must contain the usual derivative a as a µ µ 
particular case we introduce a new field Au(x), a real vector field such that : 

(II. 10} 

Equations (II. 9) and (II. 10) will give us the transformation law of the so­
called vector gauge field Aµ(x) corresponding to equations {II. 7) : 

e A1 = u e A u-1 + i {au U) u- 1 
µ µ 
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or 
A· = u ~A - i a ~ u- 1 

u ( µ e µ ' 

For U(x) = eieJ\(x) we have : 

(II. 11) 

therefore the lagrangean constructed with the fields wa(x), wa+(x), 
the new vector gauge field Aµ(x) and the covariant derivative (II. 9) is gauge 
invariant since now, as a result of the equations (II. 7), (II. 9), {II. 10) 
and (I I. 11) : 

(II. 12) 

since 

U* ( J\) U ( J\) 1 

To this lagrangean 

we must now add a term referring to the field AJJ(x) alone and this term, inva­
riant under the transformations (II. 12), is : 

L 1 )JV 
A = - "2f F {x) Fµv(x) 

Fµv{x) = av Aµ{x) - a~ Av {x) 
{I I. 13a) 

Indeed the lagrangean {II. 13) contains a new field A~ in interaction with 
the matter fields ~a. The co~plete lagrangean must contain a piece which 
describes the gauge field in the absence of the field ~a. 

The covariant derivative components as defined by equations {II. 10) 
do not commute ; one has 

[ Dµ , oJ (I I. 13b J 
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We therefore take this invariant curl as the definition of F µv 

F = a A - a A = i [D , D ] µv v µ µ v e µ v 
(I I. 13c) 

and this is the only gauge-invariant term, with first derivatives of the gauge­
field Aµ(x) ; a term of the form A Aµ would give a mass to the field A µ µ 

and would not be gauge invariant. 

The gauge invariant lagrangean is thus : 

(II. 14) 

Clearly, the covariant variational principle requires that the covariant derivati' 
Dµ ipa, and not aµ ipa, be one of the field variables to be varied. 

If we vary the fields wa(x), Dµ ipa(x) for fixed Aµ{x) (that is, 

o Aµ= 0) the variation principle (I. 2), (I. 2a) will now be : 

a2 -D* 
a ipa(x) µ 

One thus obtains the equations of motion 

Dµ* a 2 a2 
= 0 -

a(oµ 11?(x)} a 11P(x) 

and similarly, if one varies ipcx+, Dµ* wcx+ 

Dµ a L a.£? 
a(Dµ* ipa+(x)) a "'a+{x} 

(I I. 14a) 

(I I. 15) 

= 0 (II. 15a) 
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Variation of the field Aµ for fixed ~a will lead to the A-field equations 

which have the form : ~ 

a Fµv(x) =- _! __ 
v a Aµ(x} 

* From the defintion of Fµv it follows that 

av ~a + aa Fva + aa Fa" = 0 

(I I. 16} 

(II. 16a) 

(I I. 16b) 

The latter, (II. 16a) and (II. 16b) are the Maxwell equations for the electro­
magnetic field if we define the conserved current : 

e jµ(x) = - a~ 
a Aµ(x) (II. 16c) 

In view of equations (II. 9) and (II. 14) we have 

/(x) (I I. 16d) 

Equations (II. 16) can be written 

(II. 16e) 

* If F' (x) I Fas( ) . aB µv = 2 £µvaB x is the dual of F (x), equation (II. 16b) becomes 

av ~µv (x) = 0 

The second-hand side is null since there is no conserved axial vector electro­
magnetic current for massive spinor fields. 
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which shows that the current is 9auge-invariant 

e jll(x) = - a a .27 
v a F µ)x) 

(I I. 16 f) 

Note that the following identity holds 

(I I. 16 g) 

which is helpful to show inunediately the conservation of the current from its 
expression (II. 16d). Indeed the invariance of the lagrangean under the gauge 
transformations 

means that 

a off 
a A(x) 

= ie (II. 16h} 

The equations (II. 15), {II. 15a) describe the evolution of the field wain 
interaction with the electromagnetic field Aµ(x). 

In view of the transformations (II. 11) and of the gauge invariance, 
if Aµ(x} is a solution of these equations, then an infinite set of solutions 
will be obtained by formula (II. 11), depending on an arbitrary function A(x). 

In order to obtain a definite solution we may make a particular choice 
of the gauge function and thus eliminate (some of} the ambiguity in All. This 
can best be done by imposing the Lorentz gauge condition 

(II. 17) 

If a given solution aµ(x) does not satisfy this condition, then with t;iµ 

we construct another solution 
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and choose A(x} so that Aµ(x} will satisfy equation (II. 17), that is A(x} 
must be a solution of the equation 

o A(x} = - a aµ(x} 
µ 

We may, for instance, choose a retarded solution of this equation 

where 

~et(x - y} = 0 for x0 
< y0 

Physically a subsidiary condition is required by the fact that a free 
electromagnetic field as described by Aµ(x), contains four components and 
therefore in the quantized theory Aµ(x) would describe transverse photons 
(components A1, A2), longitudinal photons (component A3) and time-like photons 
(component A

0
).0nly transverse photons are observed so the spurious components 

A3 ~and A0 must give no contribution to physical observations. 

I I. 3 - MAXWELL'S EQUATIONS AND THE PHOTON PROPAGATOR. GAUGE FIXING CONDITIONS 

Maxwell's equations (II. 16a), (II. 16b) may be written in virtue of 
the definition of Fµv, equation (II. 13} 

(I I. 18) 

Now this equation admits of no Green's function. Indeed a Green's function of 
equation (I I. 18) 

{o gµv - aµ av} Av(x) = jµ(x) 

would satisfy the equation 

{ o gµv - all av} ~v).(x - x') = o\ o4
(x - x') 
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we have, from the latter equation 
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-ik(x -x') e 

(II. 19) 

Now the function ~vA(k) does not exist. For it would have to be of the 
fonn : 

(I I. 19a) 

with A(k) and B(k) functions of k2. But then this would give 

t: o\ 
no function A(k) and B(k) exists that satisfy equations (II. 19) and 
(I I. 19a). 

We therefore need to impose a condition on the field A which amounts 
µ 

to fixing the gauge, for obtaining a solution of Maxwell's equations. The choice 
of gauge breaks the initial gauge invariance. Lorentz condition still maintains 
gauge invariance for those functions A(x) which satisfy the wave equation : 

o A (x) = 0 (I I. 19b) 
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Other gauge choices are possible such as the Coulomb gauge : 

-+ -+ 
V • A = 0 (II. 17a) 

If one imposes the subsidiary condition (II. 17) then equation 
(II. 16a), (II. 16b) are equivalent to 

(I I. 20) 

The Green's function of this equation is therefore 

~ (k) = - gµv µv k2 - (II. 21) 

where the denominator means k2 + iE. This is the Feynman propagator for the 
photon field. 

An alternative way to obtain the equations (II. ZO), (II. 21) is to 
include a term : 

(I I. 22) 

in the lagrangean (II. 14) and use the method of the Lagrange multipliers : 

~· = - i Fµv Fµv + L(~a,wa+, Dµ wa,(Dµ Wa)+) - _!_ (aA AA)2 
2a 

The variation of ~· with fixed a gives the equation 

{ a gµv + ( -} - 1) aµ av } Av(x) = jµ(x) 

of which the Green's function is such that 

and is therefore : 

~· 1 { k k } µv(k) = - kZ 9µv - (1 - a) ~ 

(II. 23) 

(II. 23a) 

(I I. 23b) 

(II. 23c) 
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For a= 1 one obtains the previous result. The case lim a = O gives the 
Landau propagator the physical results must, however, be independent from 
the gauge choice, i e, from a. ~ote that the Landau propagator satisfies the 
equation 

kµ ~· {k) = 0 
µv 

similar to the Lorentz condition for the field Aµ. 

II. 4 - THE ENERGY-MOMENTUM TENSOR OF FIELDS IN INTERACTION WITH THE 
ELECTROMAGNETIC FIELD 

The energy-momentum tensor of the matter fields ipa in the presence 
of an electromagnetic field is defined by 

T UV 
m a Y o" llla + h.c. - ~µv 

a(Du l!Ja) 

as a generalization of equation (I. 32). 

The divergence of T µv is : 

aµ Tmµ" = a ( a 2' o" 11P) + h.c. - a" Y 
u a(Dµ 11F') 

(I I. 24) 

If one takes account of the identity (II. 16g), of the field equations (II. 15), 
(II. 15a) and of the equation (II. 16h) one obtains : 

a T µv = aY [oµ, o"] iJP u m a (Dµ iJF') 
+ 

+ [ Dµ*, D"* 1 ipa+ 
aY 

a(Dµ ipa)+ 

Now 
(I I. 25) 
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So, in view of the equation (II. 16d) 

a T µv = e Fµ" j (x) 
1J m 1J 

(I I. 26) 

The second hand-side is the Lorentz force. One sees easily that, for instance : 

~P=pE+ (jxs] 
dx0 

where P is given by (I. 57) ancl 

Note that the total energy-momentum tensor is in fact : 

Tµv 
total 

which gives for the electromagnetic part 

whence 

a Tµ" = - e F°" j 
µ Y a 

(I I. 27) 

{I I. 28) 

a result which follows from the equations (II. 16a), (II. 16b) and (II. 16c). 

Therefore : 

~ Tµ" 0 0
µ total = (II. 29) 
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II. 5 - NON-INTEGRABLE PHASE FACTOR AND THE INTEGRAL FORMULATION OF GAUGE 

FIELD THEORIES 

In the § II. 2 the notion of electromagnetic field was presented as 
a vector gauge field necessary to the invariance of the equations of motion 
of complex fields under the local gauge group U(l). Another formulation 
of gauge field theory, mathematically based on the so-called fiber-bundle 
theory, has been developed by Wu and Yang, which sheds a deeper light on the 
mathematical nature of gauge field theories. 

As it fo 11 ows from the gauge transformation equation for the e 1 ectro­
magnetic potential field J\i(x), (II. 11), the electromagnetic field tensor 
F is gauge invariant µv 

F' = F µv µv 

This fact has led to the traditional conception that the field tensor F µv 
determines all electromagnetic effects, their descripton by the vector field 
Aµ being a convenient auxiliary method for determining Fµv· 

In 1959, Aharonov and Bohm proposed an experiment, which was carried 
out, and which definitely shows that if F determines all electromagnetic µv 
phenomena in classical theory, this is not true whenever the electrons (or any 
other charged particles) are in conditions such as to present quantum effects 
and are therefore described by quantum mechanics. 

The principle of the Aharonov - Bohm experiment is indicated in 
Fig. II. 1, electrons are incident from the left towards a cylindrical region 
from which they are excluded. 

screen 

interference fringes 

Figure I I. 
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Inside the cylinder one may set up a magnetic flux which is confined 
to this region, the fields vanishing outside the cylinder. Experiment shows that 
the interference fringes produced by the electrons on a screen (due to the 
fact that each electon may follow a path above or below the cylinder) when there 
is no magnetic flux, are shifted when a magnetic flux is set up in the cylinder, 
the electric and magnetic field being kept zero outside the cylinder. Aharonov 
and Bohm predicted therefore that there may exist electromagnetic action on 
electrons in region where F = 0 

JN 

Wu and Yang have shown that if the amplitude for the experiment with 

no magnetic flux in the cylinder is 

where f+ (f-) is the amplitude when the lower (upper) paths are blocked, 
then the amplitude when there is magnetic flux will be of the form : 

+ i e J A dxµ 
S' = f + f- e J µ {I I. 30) 

where the integration is over the closed loop on the cylinder wall. Thus, the 
flux of the magnetic field through a surface which cuts the cylinder determines 
the interference effects. 

The relative phase difference between f+ and f- in (II. 30) 

namely 

i e lA dxµ 
e j µ 

(II. 31) 

determines the phase shift in the interference fringes. This effect is, however, 
gauge-invariant if the gauge phase factor is a simple-valued function. Thus, 
if two fields A a and A b are gauge-transformed from one another : 

lJ lJ 

b a A = A - a A(x) 
lJ µ µ 
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they give the same interference effect on the screen provided that the 

function : 

eieA(x) 

be single-valued. Indeed 

i e ! A a dxµ 
e j µ f b µ 

i e A dx 
= e µ 

if ief a A(x) dxµ 
e µ 1 

and so, if 

] 
21T 

A( x) O = 21T n 

(the gauge function itself need not be single valued). 

The fundamental concept of a non- integrable phase factor 

IQ iJ 

41 i e P A dx 
QP = e µ (II . 32) 

is thus introduced, where the integration is over any path from point P to 
point Q, and electromagnetism, in the words of Wu and Yang, is the gauge­
invariant manifestation of this phase factor, if the physical observables 
are independent from an arbitrary gauge transformation : 

i e J~ A dxµ - i e A(Q) i e JQP A dxµ i e A(P) 
e µ ~ e e µ e 
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The gauge-transfonned of the phase-factor (II. 32) contains the gauge function 
A(x) only at the end points of the path. For a closed loop, · 

A(P) = A(Q) 

and the phase factor is invariant. 

Of course, the consideration of this phase factor raises the problem 
of the analytic behaviour of the field Aµ(x) in space-time. If Aµ(x) has 
singularities along some paths the non-integrable phase factor is not defined 
through these paths and conditions have to be found to define the integral in 
these cases. 

A notable example is that of Dirac's magnetic monopole, namely a 
magnetic field B(x), solution of Maxwell's equation over all space excluding 
the origin and which has the form 

~ 

B(x) = ~ ! 
r r 

(II. 33) 

where r = lxl. This represents a monopole of strength (magnetic charge) g 

located at the origin of the coordinates. The region of this solution excludes 
the origin in three-dimensional space or the world line of the monopole in 
space-time. 

A(x) 
As in the region of definition we have V•B = 0, 

may be found such that 

B=VxA 

Ohepossible choice for A is, in polar coordinates 

AI~ = r s~n 6 (1 - cos e) 

a vector potential 

(II. 34) 
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and another one is 

All = - g (1 + cos e) tt> r sin e (I I. 35) 

so that a Al,11 
B = (V x Al,11) = 1 ( 1... (sine AI,11 ) - e ) = _g__ 
r r r sin e ae tt> Ott> ~ 

a AI,II a( A ) 
1 ( r - sin a r tt> ) = 0 r sin e a tt> _a_r_ 

a(r Al,11 a Al,11 
B = (V x AI,II) = ! ( e - a e r ) = o 

tt> tt> r \ a r 

The first solution (II. 34) is singular only at e = n whereas the 
second solution (II. 35) is singular only at e = O. Both types of singularities 
may be called strings of singularities. Therefore the region of definition of the 
monopole solutions will be the intersection of two pieces of space, one, R1, 
which excludes e = n (the lower z half-axis) the other, R2, which excludes 
e = O (the upper z half-axis) : R1 n R2. 

If we take a sphere with center at the origin and consider a parallel 
over its upper surface defined by r, e, ~the integral of A along this parallel 
will give the magnetic flux through the upper cap of the sphere since 

J ts · B = p A1 • dr = pd tt> r sin a Aitt> = 2 n g (1 - cos e) 
upper cap parallel 

(I I. 36) 

This is correct since it vanishes when the parallel shrinks to a point, e ~ O. 
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If we had not excluded the lower half-axis from the region of 
definition, in the limit a~ n the parallel would tend to a point, the south 
pole, the integral along the parallel would tend to zero but the formula (II. 36) 

would give 4 n g at this limit. 

The flux through the lower cap cannot be calculated with AI since 
it would be, for this solution 

( ts · 8 = - f d <P 
iower cap 

r sin e 

and this does not tend to zero as a~ n. 

AI = - 2 n g (1 - cos e) 
q> 

The correct flux is obtained with the solution (II. 35) 

f ds • B = - f d <P r sin e AII<P = 2 n g (1 + cos e) 

lower cap 

(II. 37) 

which has the correct behaviour at e ~ n 
and lower caps will be 4 n g. 

the total flux through the upper 

If we consider the non-integrable phase factor between two points 
P and Q over the sherical surface belonging to the region R1 n R2 then 
we have two equivalent descriptions corresponding to the two solutions (II. 34), 
(II. 35) : 

I e JQ AI dxµ 
cI> PQ = e p µ 

~II 
PQ = e 

e J~ AI~ dxµ 
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If one compares these two solutions, (II. 34), (II. 35) one sees that 

therefore 

J A1• dr = J A11 • dr + JV A • dr 

that is, for P and Q on a parallel at r, e, ~ : 

l: r sin e d ~ A1~ = l: r sin e d ~ A11 ~ + 2 g l: d ~ 
we see that : 

~I _ e2 i e g ~ (Q} ~II e- 2 i g ~ (P} 
"' PQ - "' PQ 

(I I. 38) 

where S = e2 i e 9 ~ is the gauge transfonnation on the phase factor. If 
we take the closed path from ~(P} = 0 to ~(Q} = 2n we shall have 

I II 
t PQP = t PQP 

if the following condition is satisfied 

4neg=2'1l'n 

with n an integer. 

This is the Dirac's quantization of the magnetic strength g : 

n 
g = 2e {II. 38a} 
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The gauge transformation is therefore single-valued and expressed by 

What we did was thus : 1) divide the space into two overlapping 
regions R1 and R2 ; 2) define A1 and A11 , each singularity free in 
R1 and R2 respectively, and such that 3) F u= a. A1 - a A1 = 

UV V U U V 

= a A11 - a A11 and 4) A1 and A11 differ by a gauge transfonnation. v u u v µ µ 

In order to define the phase factor associated to a path we have to know if 
the path is entirely within one of the regions, R , say, then Aa will be a µ 
inserted in the integrand of the phase factor. If the path is enterely inside 
the overlapping region there will be two possible phase factors related by 
a gauge transfonnation such as (II. 38). For a path that criss-crosses in 
and out of the overlapping region a phase factor can be defined by considering 
the phase factor for each path in each region and the gauge transfonnation 
which leads from the final point in the first region to the first point 
in the second region, and by multiplying them together. 

This conception of gauge fields and transformations has been developed 
by Yang and co-workers, and extended to the non-abelian gauge field theories. 
They showed that the mathematical basis of this integral approach to gauge 
theories is the theory of fiber bundles. The topopogical nature of the theory 
is thus revealed ; the differential approach, although useful in computation, 
did not bring to surface this mathematical inner property of gauge field 
theories 102, 103, 37, 38) . 

A final remark is the following. If in classical physics the action 
integral corresponding to the interaction between a point electron with 
charge ep and an electromagnetic field is : 

(II. 39) 
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where s is the proper-time, then the coupling constant e in the phase 
factor (II. 31) is related to ep by 

ep 
e =- (II. 40) 

1'1 

That ep is the particle charge results from the fact that Maxwell's equations 
follow from an action principle containing (II. 39) and from Gauss theorem 
and Poisson's equation. The relation (II. 40) follows from the rule that Dµ 
(which contains e and not ep) must replace aµ in the quantum-particle 
equations like Dirac's. Planck's constant appears therefore in the quantisation 
equation (II. 38a) expressed in tenns of the particle charge ep. 

PROBLEMS 

II - 1. From the action for a system of classical particle and electromagnetic 
field (we re-establish the velocity of light c) 

S = - m0 c Jds - .J:c Jd4x Fµv{x) Fµv(x) - % Jjµ(x) Aµ(x) d4x 

where the current is : 

µ I dZµ 4 j (x) = CIS" o (x - Z (s)) ds 

deduce a) the classical equations of motion of the particle by variation of the 
path Zµ(s) ; b) the classical field equations by variation of the field 
c) given the energy-momentum tensor of a classical particle : 

Tµv = m c2 J dZµ dZv o4 {x - Z(s)) ds 
m o CIS" <JS 

show that 

~ {Tµv + Tµv ) 0 0 v m field = 
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d) with the energy-momentum tensor Tµvm above calculate the total orbital 
angular momentum of a classical particle. 

II - 2. a) Write Maxwell's equations 

~F v _ 1 µvaB F 
- "Z E aB 

in terms of the electric field Ek= Fok, the magnetic field Bk;~ Ekin Fin 

and the charge and current densities, p(x) = j 0 (x) and J(x). 
b) Which substitution between the fields E and B leaves the free field 
equations invariant ? 

c) In the presence of matter, a magnetic monopole current would be needed for 
an extension of the above symmetry to the field equations. What is the transfor­
mation law of the magnetic current under improper Lorentz transformations ? 

II - 3. Discuss the electromagnetic field equations in a two dimensional 
Minkowski space, in interaction with a spinor field. 

II - 4. a) Give the field equations and the hamiltonian of an electromagnetic 
field in interaction with a Dirac field in the Coulomb gauge. 
b) Show that the Coulomb interaction energy between the charges is contained 
in the field energy. 
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III. 1 - SCALAR ELECTRODYNAMICS 

This is the case of a scalar complex field 1.p(x), q/(x) with 
mass m and which may have a self-interaction terfll, with lagrangean given in 
equation (II. 1). 

The electromagnetic gauge-invariant lagrangean for this field is, 
according to equation (II. 14) : 

The interaction lagrangean between the scalar field and the electromagnetic 
field is : 

which is added to the qrfield lagrangean 

<~ µ + 2 + n + 2 c:z; _ = (a <t>} (a <t>) - m <t> <t> - (<t> <t>) 
<t> µ "2 

and the y-lagrangean : 

The reader will show that under the transformations (II. 7), (II. 10, (II. 11) 
one wi 11 have 

only the sum .£7 + .27 is gauge-invariant as is 
<t> (ff'( 

.£7 alone. 
y 
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The current is : 

/(x) = - .! a.!? = i { c/(x) oll cp(x) - (Dµ cp(x))+ cp{x)} 
e a A (x) • 

µ 

(III. 2) 

and the field equations : 

(III. 3) 

{ ( Dµ D µ + m2 + ~ (IP+ <!>) } IP( x) = 0 

The energy-momentum tensor of the IP-field is : 

(III. 4) 

III. 2 - PROCA VECTOR FIELD ELECTRODYNAMICS 

The lagrangean for a free complex Proca vector field <Pµ9 IPµ+ 
with mass m is : 

1 O;:? µv+ 
L=-zY 0 

wMch gives the field equations 

(III. 5) 

(III. Sa} 
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with 

(L:::'lJV 11 V 
Y = av <Pµ - a'"' to 0 . (Ill. Sb) 

We define the gauge-covariant field 

(2:71JV V ,, µ V 
Y =D tp'"'-D tt> (III. 6) 

where oJ.J is given by equation (II . 9 ) . This means that 

(I I I. 6a) 

The gauge invariant lagrangean is therefore : 

(III. 7) 

from which we obtain, by varying C2:? , ~ + 
Yµv µv 

the equations of motion, by variation of <P , i.p+ µ µ 

the equation (III. 6), and 

~µ\> 2 
D + m toµ = 0 

\) . (III. 8) 

The interaction lagrancean is : 

(III. 9) 

The current is : 

(III. 10) 
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Note that Proca's equation for a free field is equivalent to the couple of 
equations 

0 (III. 11) 

In the presence of an electromagnetic field we deduce from equation (III. 8) by 
application of the operator Dµ, and from the commutator (II. 13a) : 

(III. 12) 

the supplementary condition 

· CL?ciB 
D q>µ = l e F y 

lJ 2-;;f a$ 
(III. 13) 

which together with equation (III. 8) replaces the equations {III. 11). 

III. 3 - SPINOR FIELD ELECTRODYNAMICS 

The gauge-invariantlagrangean for a spinor ~(x) with mass m 
is 

from which one deduces the field equations 

(i ya• D - m) ~ = o, 
Cl 

(III. 14) 

(II I. 15) 

The energy-momentum tensor is obtained from equation {I. 35) with 
the substitution of the derivatives aa by the covariant derivatives oa, rfl*. 

GFl. I 
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III. 4 - SCALAR AND PROCA ELECTRODYNAMICS - ALTERNATIVE FORMULATIONS 

Instead of the scalar field w(x} and its hermitian conjugate we 
shall introduce two equivalent real fields q>1(x), q>2(x} by the equations : 

q> (x)= _!_ ((0 (x) + i q>2(x)} 
./'l 1 

q>+(x)= _!_ (q> (x) - i q>2{x)) 
./'l 1 

(I I I. 16) 

Clearly the transformed fields by equations (II. 7) will be equivalently 
expressed in terms of the fields q>a(x) according to 

q>' 1 =cos (e A} q>l - sin (e A) q>2 
(I I I. 16a) 

q> 1

2 =sin (e A) q>l +cos (e A) q>
2 

that is 

( 

c~s (e A) 

srn (e A) 

- sin ( e A} \ ( q>l ) 

cos (e A) ) q>2 

(II I. 16b) 

If we consider the matrix : 

-(0 -i; ,. 2 -
. i 0 

(III. 17) 

then the above equation may be written in compact form 

<!>' (x) = 
-ie A ,-2 e <j>(x) (III. 17a) 
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where 

(

ti>l (x)) 
cp(x) = 

tt>2(x) 

and, by series development : 

-ie J\ T 2 (cos (e J\) 
e = cos (e A) - i(sin (e A))T2 = 

sin (e J\) 

(III. 17b) 

- sin (e J\)) 

cos (e A) 

(III. 17c) 

The application of the covariant derivative to 1p(x), <P+(x) will lead to 

(II I. 18) 

The gauge transformation : 

-i e J\(x) T 2 4>' (x) = e cp(x) 
(II I. 18a) 

will 1 ead to 

(III. 18b) 
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The gauge-invariant lagrangean is now 

Sf= - { Fµv Fµv + i ) (Dzµ $)+ (0µ2 $) - m2 ($+ $) -

- ~ {$+ 4>)2 l (III. 19) 

Let us now consider the case of three Proca vector fields, two of 
them being complex ~(x), ~µ+(x) and the third one being real, ~3µ(x), say. 
We have then to consider the following transfonnations 

~+(x) 

~ c~µl(x) + i ~µ2{x)) 

1 
(tt>\ (x) - i ~µ 2(x)) 

IZ 

then we may consider the triplet 

(Ill. 20) 

(I I I. 21) 

(III. 21a) 
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which will transform in the following way : 

(
::;:::\ = (::: :: :: 

<P 3(X) ) 0 

- sin (e A) 0) 
cos (e A) 0 

0 1 

Therefore we may write : 

µ,( ) - ie A(x) L3 ~µ (x) 
4> x =e 't' 

where 

If then we define the covariant derivative 

then 

D'µ ~·v 
{3) 'I' 

- ie A L3 - e 
µ \) 

D (3) cf> 

(III. 2lb) 

(III. 2lc) 

(III. 22) 

(III. 22a) 
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The lagrangean for this triplet of Proca fields is then : 

1 a::;> µ:v+ 
( 3 )µv - 4 & ( 3) ( D { 3 ):v <Pµ - D { 3 )µ ct>) -

{II I. 23) 

from which one deduces : 

a:? µv o" µ µ \) 
~ (3) = (3) ct> - D (3) <P -

{III. 24) 

and the equations 

D:v a:? 2 µ 
(3) ~(3)µ:v + m <P = 0 (II I. 24a) 

These give the set of equations : 

(III. 24b) 

for the fields {III. 20). The current in Maxwell's equations 

is now : 

(II I. 25) 
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PROBLEMS 

III - 1. From Proca's equation for a free massive vector field cpll(x} 

av ~µv0 (x} + m2 cpll(x} = O 

C£?lN = ;y av cpll - aii cp v 
0 

it follows that : 

so that 

What are the corresponding equations when this field interacts with an elec­
tromagnetic field ? 

III - 2. From the lagrangean 

L = - ! Fµv Fµv +~A (i ya Da - m) WA - ~$A (yA Dv + yv DA) Wv + 

a} deduce the equations of motion for the interacting electromagnetic and 
Rarita-Schwinger fields ; b) obtain the subsidiary conditions ; c) show that 
the current is a power series in pxa (the corresponding theory is non­
renorma 1 i zabl e). 

III - 3. Given a 2 x 2 unitary, antis,Yr.llletric matrix C such that 

t + -1 + 
a = - C a C 

a) show that the basis in the space of 2 x 2 matrices can be chosen as fanned 
by C and three symmetr)c matrices ; b) express a synunetric two-component 
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Weyl spinor 

Wae(x) = wea(x), a, 8 = 1,2 

in terms of a three-dimensional complex vector F(x) c) assuming that Was 
satisfies Weyl's equation: 

- i <~ • ~>aa• waa' ao Waa 

find the equation for F(x) d) show that F(x) can be expressed as a linear 
combination of the electric field E(x) and the magnetic field B(x) so as 
to give Maxwell's equations 

v · ! = o ; v . 8 = o 

v x 8 - a
0 

E = o ; v x E + a
0 

B = o 

e) how does F(x) transform under spatial reflection ? 

III - 4. Develop the canonical quantization formalism for 
a) a free scalar complex field 
b) a free Dirac field 
c) the free electromagnetic field in the Coulomb gauge. 

(Consult refs. 13-23, particularly Bjorken and Drell, ref. 15) 

III - 5. a) Establish the rules for Feynman diagrams in electrodynamics. 
b) Indicate the calculation of cross-sections and decay probabilities. 
(Consult refs. 13-23 and specially Bjorken and Drell, ref. 15, Chaps. 15-17 
S.M. Bilenky, Introduction to Feynman diagrams, Pergamon Press, 1974, Chaps. 
5-6). 



CHAPTER IV 

The Vang-Mills Gauge Fields 
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IV. 1 - THE ISOSPIN CURRENT 

Let us consider a set of two complex fields which forms a two­

component spinor 

(IV. 1) 

When this field is submitted to transformations of the SU(2) group in correspon­
dence to a rotation in three-dimensional x-space, this will be the Pauli spinor. 
As is well-known, the Pauli-Schrodinger equation has a term, the interaction 
between the spin magnetic moment and a magnetic field 

e -+ * - Tm (a • ~> 

which must leave the equation invariant under the rotations 

1j1 1 (x 1
) = S(a) ljl(x} 

The invariance condition amounts to the equation 

s-1 (d. BI ( x I } ) ljl I ( x I ) = (a • B ( x}) 1'I ( x} 

that is 

so that S must satisfy the relation 



For an infinitesimal rotation 

this equation is satisfied by 

(Jk 
S = I + i ak T 
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where the parameters ak are (the rotation angles) given by 

1 
0 k = "2" e:kR.n 11.e.n 

(IV. 2) 

the antisymmetric tensor e:ktn being the structure constants of the SU(2) 
group : 

[~ 

[~ 
(IV. 2a) 

A two-component Pauli spinor is therefore a pair of complex functions 
(IV. 1) which transform according to the law 

• (Jk 
1a 2 ~'(x') = e k ~(x) 

in correspondence to the rotation of the space coordinates 

akR. akn = oR.n 

a - 1 k - "2 e:kR.n aR.n 
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We now consider spinors of the form (IV. 1) the components of which 
describe two particles with (exactly or almost) the same mass and which may be 
regarded as two different states of the same particle. This assumption implies 
the introduction of a new degree of freedom described by matrices Tk which obey 
the commutation rules (IV. 2a), the representation of the isospin generators 
in two-dimensional space ; and that the transformation of ~ under S is given 
by (IV. 2) with a replaced by T, the coordinates x being unchanged. The 
components ~1 (x), ~2 (x) may be either scalars in which case we have a descrip­
tion of objects like the K-meson : 

K(x) = ( K+ (x)) 
K0 (x) 

(IV. 3) 

or spinors in which case we may have objects like the two quarks u and d : 

d(x) ' 
q(x) = (u(x)) (IV. 3a) 

the proton and the neutron which form the nucleon field N(x) 

the 

N(x) ( 
p(x)) 
n(x) 

neutrino and its associated negatively charged 

L(x) = (vR. (x)) 
R. ( x) 

(IV. 3b) 

lepton (with vanishing mass) 

(IV. 3c) 
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This notion of isospin was introduced by Heisenberg to describe the fact that 
a) proton and neutron have almost equal mass ; b) the forces between neutrons 
and protons, electromagnetic forces excluded,do not depend on the charge of 
these particles. The charge (which is the degree of freedom under consideration) 
of the objects (IV. 3) and (IV. 3b) is given by : 

1 Q = °2' (1 + T 3)e 

For the quarks (IV. 3a) we have 

Q2 = [ { ( 1 + T 3) - j ] e 

For the leptons (IV. Jc) : 

1 Qt = - °Z (1 - TJ} e 

(IV. Jd) 

(IV. 3e} 

(IV. 3f) 

The lagrangean for such fields will be invariant under a transfonnation of the 
form (IV. 2) 

(IV. 4) 

in the case of infinitesimal transformations, or 
• -+ -+ 
1 Ct • T 

~·(x) = e "Z w(x) (IV. 4a) 

for the finite case, if the masses of the two fields w1(x), w2(x} are equal. 
The x-coordinates are unchanged. Now the phase transfonnations (IV. 4), (IV. 4a) 
generalize those given in equations (I. 19a), (I. 19). In the previous case, the 
transformation group had one parameter only, A, and one generator, the identity, 
the group U(l). In the present case, the group, SU(2), has three parameters, 
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+ a and three generators ; . Therefore, the Noether current which corresponds 
to the phase change (IV. 4) is : 

j\(x) · { a+ Tk alf' = 1 lJJ (x) T 
a(a ipa+(x}) 

JJ 

d if' 
(IV. 5) 

~ q,a(x) } 
a(aJJ q,a(x)) 

This is the so-called isospin current of the q,-field. For the scalar components 
case (sum over a = 1,2) : 

all c.p + a <P - m2 + a ii a <Pa <Pa 

we have for its isospinor current 

·lJ ( { + T k lJ + T k } 
J k x) = i <i> (x) ~ a c.p(x) - aJ.J <P (x) ~ c.p(x) (IV. Sa) 

where 

(

<P (x)) 
c.p(x) = 1 

<P2(x) 

For the spinor case : 

if'= ~ (i y a - m) q, 

where tJ> is given by (IV. 1), then the isospinor current is 

(IV. 5b) 

or 

tPa, {x) 

and so on. 
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Clearly, according to the relations given in (IV. 3d) to (IV. 3f), 
the electromagnetic current is 

for the scalar isospinor such as in (IV. 3). 

For the quarks (IV. 3a} the electromagnetic current is 

where 

jµ{x) = q{x) yµ q(x) 

jµ3(x) = q{x) yµ ~ q{x) 

We must remember that the charges of the u and d-quarks are ~ e and 
1 

- j e respectively. 

We note that, as a result of the invariance of the lagrangean 

under the group SU(2), equation {IV. 4), we have : 
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hence, as 
-+ 

a w = i a . ; ~ 
-+ 

o(aµ 1'>) = i ~ . .Z au w 

then, for a arbitrary 

(IV. 6) 

IV. 2 - THE YANG-MILLS ISOSPIN GAUGE-FIELD 

We saw in § II.2 that the electromagnetic gauge field was introduced 
in order to have the postulate of invariance under the global phase transforma­
tion group (II. 5) generalized to the local phase transformation group (II. 6). 
And in this way the conserved electromagnetic current is coupled to the 
electromagnetic field. 

The idea introduced by Yang and Mills was to generalize this notion 
to other conserved currents. Thus the isospin current being derived from the 
invariance of the lagrangean under the global transformations (IV. 4a) the 
problem arises to search for a lagrangean invariant under a local isospin 
transformation of the form : 

-+ 

i g A(x) • ~ 
1J>

1 (x) = e w(x) (IV. 7) 

where the three parameters Ak(x) now change from point to point. The constant 
g is explicitly introduced by analogy with the charge e introduced in trans­
formations {II. 7). 
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-+ 
For an infinitesimal transfonnation (A (x) very small everywhere) 

we have 
-+ 

~'(x) = (I+ i g A (x) • ~) ~ (x) 

..... 
~·+(x) = w+(x){I - i g A(x) • .!. ) 

2 

(IV. 7a) 

As before, we see that the derivative of the field does not transfonn like the 
field itself, since : 

..... ..... 
au ~'(x) = (I+ i g A(x) • ~)au $(x) + i g (au A(x)) • '2- $(x) (IV. 7b) 

Therefore : 

{IV. 7c) 

We see that terms like 

go over into : 

aµ 1p'+ (x) aµ .,,. (x) = aµ .,,+ (x) aµ <P(x) _ ; 9 ) "'+ (x); aµ <PCXl- aµ.,,+ (x) i <P(x) I · a/i(x) 

Also terms like 

GFT. J 
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go over into : 
+ 

~·(x) rµ aµ "1'(x) = $(x) rµ aµ $(x) + i g ~(x) rµ ; $(x) aµ A(x) 

The changes in ~ and aµ $ are : 

-+ 

o 1P = i g A (x) • ~ 1P , 
+ 0 $ = -

-+ 
+ T -t" 

g tp (x) -z · ~ (x) 

o ( aµ iJJ) = i 9 { 1. ( x) • ~ a ii lP + aµ A ( x) • ; $ } 

o ( aµ ip +) = - ; g { aµ "'+ ; • A ( x) + "'+ ; • aµ Ji. ( x) } 

Therefore the change in the lagrangean 

is 

·µ + L = L(ip, a tp, ip , 

o L = ~ ~ o w + - a L - o ( aµ ip) + h . c . 
(a(~µ ip)) 

o L = - g j\1(x) • a A (x) µ 

account being taken of equations (IV. 5) and (IV. 6). 

(IV. 8) 

(IV. 9) 

By analogy with the electrodynamical case (U(l) was there the 
group of transfonnations now the group is SU(2)) we look for a new real vector 
field, Aµk(x), which will change, together with the field $(x)(k = 1, 2, 3): 

-+ 

iti(x) 
igA(x).; 

$' (x) = e iJi(x) 

(IV. 10) 

is such a way as to have the change (IV. 9) cancelled. 
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Equations (II. lO)suggest us to define a new, isospin covariant­
derivative : 

..... 
Dµ ip(x) = (aµ + i g Aµ(x) • ~ ) ip(x) 

(IV. 11) 
..... 

{Dµ ip(x))+ = all lli+(x}-i g "'+ {x) .z . P(x) 

We impose it to satisfy the equation 

..... 

igA(x). i 
D'µ ip'(x) = e ~ Dµ ip(x) (IV. lla) 

that is, Dµ ip{x) must transfonn like w(x). We then obtain the following 
transfonnation law for the gauge field Aµk(x) for finite gauge transformations 

g A'\Cx) • ~ = U(x) ) g A\ • ~ - i aµ I u-1 
(IV. llb) 

..... 
igA(x) • ~ 

where U(x) = e and u u+ = I implies, as for the case of U(l) 

transformations : 

In the case of infinitesimal transformations we have 

l'k ..... ..... µ l'k 
g A•µ k ( x) • 

2 
= ( 1 + ; 9 A • ~) ( g A k • 2 - ; aµ) (I -

If we therefore write 

(IV. 12) 

so as to cancel the first and second terms of the second-hand side above we 
get : 

where 
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The second term in the right-hand side is small for infinitesimal A 
and aµ A everywhere so we obtain, in view of the commutation rules (IV. 2a) 

(IV. 12a) 

The vector field therefore transforms like (equations (IV. 12), 
(IV. 12a)) (to first order in g) : 

{IV. 13) 

IV. 3 - THE ISOSPIN GAUGE FIELD AS A MIXTURE OF AN ABELIAN GAUGE FIELD AND AN 
ISOVECTOR 

We may easily find the transformation law of an isovector induced 
by the transformation {IV. 7), or {IV. 7a) of the isospinors. 

Clearly, an isovector, which has three components, may be represented 
by a second-order symmetric isospinor : 

which will transform like 

-+ -+ 

~·a'b'{x) = (I+ i g A·~ >a•a (I+ i g A•; )b'b Wab(x} 

Now an antisymmetric matrix C exists such that 

tc = - c, c+ c = cc+ = 

t-+ -1 -+ 'T=-C Tc 

the symbol t at left means transposed matrix. 
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For instance, in the usual Pauli representation of the matrices r, C may 
be taken as r 2. 

Then. in the isospin space, we may take as a basis the matrices 
T C which are symmetric 

t -+ -+ 
(T C) = T c 

and the matrix C, which is antisyrranetric. Therefore we can express ~ab in 
this basis 

~ab(x) = f(x) • ( ~ >ab {IV. 14) 

Now for the transformed functions one has 

-+ 

.... c {-r. '"c 
= f(x) ·( T >a'b' + i g A. p (f(x). (T)ab.) + 

-+ 
Tb 1 b Tc } 

+ Z- (f(x) • ( z) a• b) 

hence 

Tn Tm 
+ ( ~ ) 

c. T b 1a 
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-1 T. 
Multiply by C b'B and then by <t1>Ba' and sum over repeated indices to 
get : 

{ ~~:t)fm -f' j = fj + 2 i g Ai Tr L L L 

-1 Ti Tm T· } - ( c 2 2 C )Ba' ( .,; )Ba' f m 

so that from : 

Tm T. 1 0 i Tn 
r ; = "4 jm + "2 e:mjn r 

T Tm T· i Tr ( -.f 2 f > ..: '2J ~mji , 

- cc-1 Ti Tm T· T. Ti Tm i 
2 2 c >sa' ( f )Ba' Tr ( t- 2 2) = l 

we obtain 

The same law is deduced from the transformation of 
under (IV. 10). 

+ Tk 
1" 2 

For finite transformations U, the law is 

e: R.mj 

(IV. 15) 

1 Tj _ Tk -1 
f j 2 - u fk 2 u . (IV. 15a) 

This is the transformation law for an isovector. We see that the 
isospin gauge field is not an isovector, it behaves as a sum of an abelian gauge 
field and an isovector field, according to equations ( IV. 12), (IV. 13), (IV. 15). 

IV. 4 - LAGRANGEAN OF A YANG-MILLS ISOSPIN GAUGE FIELD IN INTERACTION WITH 
MATTER 

We see that given a lagrangean formed with an isospin field ~(x) 
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we obtain a gauge-invariant form for this lagrangean if we replace4the deriva­
tives by the operators defined in equations (IV. 11). What is the part corres­
ponding to the gauge-field Aµ (x) alone ? a 

In the electromagnetic case we introduced the field lagrangean 

L = - 1 Fµv(x) r- (x) Y ~ µv 

and the field Fµv was given by the commutator of the components of Dµ . We 
shall extend this procedure here and define, by analogy with equation (III. 12): 

tk µv i 
( '2'"'- )ab F k = g (IV. 16) 

where Dµ is given in equation (IV. 11) : 

We obtain 

(IV. 16a) 

that is 

It is the fact that the transformations (IV. 4) do not in general 
conunute (the group of transformations is then called non-abelian) because 
of the ~atrices tk' that gives rise to the second-tenn, bilinear in the 
field A, in the expression for Fµvk(x). 

We must see what is the transformation law of Fµvk(x) under the 
group (IV. 10). The electromagnetic field Fµv(x) is invariant under the 
electromagnetic gauge transformation (II. 11) ; in the present case, Aµk(x) 
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transforms according to the law (IV. 13), how does Fµvk(x) transforms itself? 

Let us define 

Fl.I"=~ Fl.l"k = av Ai1 - au Av+ 

Tk Aµ A" 
+ g ~ Ektm 1 m 

but 

hence 

~ w ( x) = av 'Au - aµ Av - i g ( 'N1 , Av ] 

Now, under the transformation (IV. 13) 

so 

hence 

o fµv = a" o Ai1 - au o Av - ; g [ o Aµ , Av ] - i g [ 'P!1, o Av ] 

In view of the Jacobi identity for three operators : 

[[a, b], c) + [[c, a] , b] + [(b, c] ,a) = 0 

we obtain 
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whence 

A Fl.JV 
k R. 

therefore 

So now Fµvk(x) is not invariant under the isospin gauge group. It transforms 
like : 

that is, Fµvk is an isovector. 

What lagrangean term are we then to postulate for the gauge field 
alone ? Let us try a term similar to the electrodynamical one : 

~ 
Yang 

1 µv 
- l F k Fµv,k 

It will be acceptable only if it is gauge-invariant. This can be written 

~ 
Yang 

since 

Tr (~w 

Therefore 

o~ 
-vang 

- ~ Tr (Fµv F ) 
c. µv 

'\, 

F 
ll" 

So the term Flt" F 
k µv, k is gauge invariant. 
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We therefore take as the gauge-invariant lagranqean for an isospinor 
matter field w in interaction with the Yang-Mills field A\(x) the following 
one : 

(IV. 17) 

where 

(IV. 17a) 

with the transformation laws (for infinitesimal transformations) 

Tk 
$

1 = (I + i g Ak ~ ) $ 

ill•+= ill+ (I - i g '\ ~ (IV. 17b) 

Fµv' _ Fµv µv 
k - k - 9 Ekin At F n 

For finite gauge transformations 
Tk 

i g Ak 2 
U = e 

one has 

~·{x) = u w(x) ; 

w + · c x > = w +·c x > u-1 

1 Tk Tk l -1 
A µk ~ = U{Aµk ~ - g aµ) U 

:f 
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The field equations are now like the equations (II. 15), (II. !Sa), (II. 16); 
(II. 16a) having in mind the new lagrangean (IV. 17) and the definitions 
(IV. 17a) : 

The current is : 

Now : 

One obtains : 

• lJ 
J k = 

al?_ o ar -

- al?= o 
a ip+ 

I -

(IV. 18) 

(IV. 19) 

To the current due to the ~-field is added a term coming from the gauge vector 
field ; this field has an isovector part and thus contributes to the isospin 
current. The transfo~med of the current is : 

(IV. 19a) 
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We note that as a result of the equality : 

Tk + Tk 
(Dµ f)+ z- g + f T (Dµ g) + 

(IV. 20) 

we have, in view of equations (IV. 18) : 

~ .11 ,. l ,,,+ ~ oi,JJ...,k= 'I' c. 

+ h.c. + 

The terms in Ekin cancel and so we are left with the relationship 

(IV. 21) 

which is the analogue of equation { II. 16h), for the electromagnetic case, and 
of equation (IV. 6) for the global isospin transformations. 

The equation (IV. 2l)is also a consequence of the invariance of the 
lagrangean under the transformations (IV. 17) 
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We note that while the total current (IV. 19) does not transform 
like an isovector, its matter part is an isovector 

{IV. 19a) 

IV. 5 - FIELD EQUATIONS AND NON-LINEARITY OF THE INTERACTION 

The lagrangean and the field equations are given in equations {IV. 17) 
and (IV. 18) with the current given in (IV. 19), (IV. 19a). 

It is however convenient to express the equations for the gauge-field 
in terms of the covariant derivative 

{IV. 22) 

The gauge-field equations are then 

D \); kR. (IV. 22a) 

and the homogeneous equation : 

D" Fae De F"a + Da Fa" = o kt R. + ki i kt ! 
(IV. 22b) 

which is the analogue of Maxwell's equation (II. 16b). 

The equati9n {IV. 22b) can also be written in terms of the commutator 
(IV. 16), namely through the Bianchi.identity 

since 

(IV. 23a) 
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From equation (IV. 22a) it is easily seen that the following 

continuity equation holds : 

(IV. 23b) 

The form of the tensor Fµvk as given in equation (IV. 17a) shows 
that there is self-interaction of tt.e field Aµk. In the absence of the matter 

field ~' the gauge-field equation is : 

0"; k.2. Fµ" 1 = 0 

and the field acts back on itself as seen in the equation 

The superposition principle is thus generally lost. This would be the case in 
electrodynamics if photons were charged. These properties, non-covariance of the 
gauge field and of the total source current, alternative forms for the gauge 

field equations, a!"!!~~~ f~~-"~- ~!1. ~~!17!'~~. :~J~_tJ_v_i~!' (Chapt. V). 

IV. 6 - REMARKS ON THE COVARIANT DERIVATIVE 

We note that the covariant derivative (IV. 22) which acts on an 
isovector is deduced from that, (IV. 11), which acts on isospinors. The procedure 
is similar to the one used in § IV. 3. Let us consider the equation (IV. 14} 
and apply the following operator, similar to (IV. 11), to each one of the indices 
of the second-rank spinor Wab(x) 

If we use the decomposition (IV. 14) we have : 

(a o ~ . A ( Tk Tk 
µ aa' vbb' +, g µ,k ~ >aa' obb' + i g Aµ,k ( ~ )bb' oaa') • 
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-1 Tm Multiply by (C )ba and by ( ~ )aa and take the trace to get 

In fact the derivative (IV. 11) of isospinors and the derivative 
(IV. 22) of isovectors are representations of the operator 

a + i g A k Tk µ µ, 

where Ta are the generators of the SU(2) gauge group. The representation of 
the latter in the two-dimensional space is : 

In three-dimensional space it is 

IV. 7 - ENERGY-MOMENTUM TENSOR FOR A YANG-MILLS SYSTEM 

The energy-momentum tensor for a matter field $ in interaction with 
a Yang-Mills field is the following : 

_ ~~ 0v $ + (Dv $)+ a~ _ L 9uv 
a(oµ $) a(Dµ $)+ 

(IV. 24) 

where the covariant derivatives are those defined in equation {IV. 11). 
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In view of the identity (IV. 20) the divergence of Tµv is : 

( 
D 3 if' )+ Dv l/J + a if' D Dv l/J 
µ acoµ iv>+ acoµ w) µ 

- Lil7 av IP - a if' 
a w a(ou w) 

therefore, in view of the field equations (IV. 18) and of equations (IV. 11) and 
(IV. 21) : 

a Tµv · = a if' [ olJ, o"] "' + [ olJ, o"] + 
µ m a(oµ ~) 

that is, because of the definition (IV. 16) of Fµvk : 

( the index 

au Tµvm = g Fµvk . ( tt ) Jµ,k ma er 

The energy-momentum tensor of the field 

Tµ" a.£? a" AB y v 9aa -a(a A k) k v 
µ a, 

Aµ 
k is 

gµv = 

= _ ~µ FB" 1 9µv (...aB F ) 
k k 9aa + 4 t- k aB,k 

Y means that the quantity refers to a Yang-Mills field) 

(IV. 24a) 

(IV. 25) 
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from which we deduce, taking the following identity 

into account 

1 ( v ...al3 B va a FBv ) 
+ "2' Fk,aS D kt ~- t + D ki F t + D ki t 

The field equations (IV. 22 a,b) lead thus to 

(IV. 25a) 

The total energy-momentum tensor is conserved 

IV. 8 - EXAMPLES OF YANG-MILLS ISOSPIN GAUGE SYSTEMS OF FIELDS 

a) Interaction of a Dirac spinor isospinor field with a Yang-Mills 
field 

(IV. 26) 

GFT - K 



The field equations are : 

(i ya D - m) w{x) = 0 , 
a 

with the matter current 
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D = a + i a a 
(IV. 26a) 

(IV. 26b) 

b) Interaction of a real scalar isovector field with a Yang-Mills 
field 

The field equations are {Dµki is given in (IV. 22)) : 

IV. 9 - THE GLOBAL SU{3) GROUP 

The SU(2) group is the set of all unitary matrices with 2 x 2 
complex elements : 

(IV. 27) 
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with determinant unity : 

det A2 = 1, {IV. 27a) 

There are three independent real numbers to characterise the matrix A, so 
the group SU{2) is defined by three parameters. A basis to represent such 
matrices is fonned by the identity and by the three Pauli matrices so that 
in general 

(IV. 27b) 

with 

{IV. 27c) 

We consider now the SU(3) group which is the set of all unitary 
matrices with 3 x 3 complex elements 

ell al2 a13) A3 a21 a22 a23 

a31 a32 a33 

such that 

+ + A3 A3 = A3 A3 = I' det A3 = 1 

As the SU{2) matrices act on a two-component spinor, the SU{3) 
matrices act on a three-component complex vector 
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so that 

is the tranformed vector by A3. 

As recalled in the Introduction, it is at present assumed that each 
variety (flavour) of quark exists in three states with the same mass which are 
distinguished by a new quantum number, the colour. Let us therefore consider 
one quark flavour qf; it will be represented by a three dimensional complex 
vector : 

and the space of these vectors transforms into itself by the colour group SU(3). 
Each component qif is a Dirac spinor. 

A quark field is then represented by a Dirac spinor with two internal 
indices, the flavour index f and the colour i : 

A global 

q' (x) 

f = 1, ... n (flavour) 
a = 1,2,3 (colour) 
a = 1,2,3,4 (Dirac spinor) 

SU(3) transformation is of the form : 
• >..k 
l ak r 

e q (x) 

(IV. 28) 

where the >..k's are the eight (3 x 3 matrices) generators of the group. The 
exponential operator acts on the color index of q(x) so that, for an infini­
tesimal transformation we have, omitting the Dirac and flavor indices 



These generators 

Al 

A4 
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have the following form 

G 
1 

D 0 ).2 

0 

0 0 

D 0 A5 
0 

= 

c-i 0) i 0 0 
0 0 0 

c 0 -i) 0 0 0 ' 
i 0 0 

1 

n 

co D A3 = 0 -1 
0 0 

(~ 
0 

D ).6 0 

1 

(IV. 28a) 

There are two of these matrices which are diagonal, A
3 

and ).
8

, the SU(3) 
is a rank-two group. 

The following are the conmutation rules satisfied by these matrices 

[ ).k ~] ).n 
(IV. 29) T• f kR.n 2 

[ Ak Ai] 1 An 
T' T + =! 0ki + dkin r 

They.are similar to those in equations (IV. 2a) ; fkR.n is totally antisym-
metric in the indices, dk is totally synunetric. They have the following 
values : in 

(IV. 30) 
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d338 dsaa 
1 

dua d228 I! 

d448 dsss d668 d778 
1 

213' 

d146 d157 d247 d256 d344 

d355 = - d366 d377 ~ ; Tr p,k >.9) = 2 ok.2. 

the other f's and d's vanish. 

Similarly to equation (IV. 5), one may write down the No ether current 

for the global group : 

l + Ak 
jµ k = i q 2 

IV. 10 - THE COLOUR GAUGE FIELD 

We now postulate that the quark lagrangean must be invariant under 
tpe local colour SU(3) group : 

Ak 
i g Ak(x} 2 

q' {x) = e q(x) 

where Ak{x) are eight functions which determine the transformations. In the 
infinitesimal case 

Ak 
q I { x) = { I + i g Ak { x) 2 ) q ( x) (IV. 31) 

The derivatives have therefore to be replaced by the covariant derivatives 

(IV. 32) 

where A~,k(x) are eight gauge fields. 



- 151 -

The requirement that these derivatives transfonn like the chromo­
spinor (IV. 31) : 

).k 
9'\{x)-z 

D'u q'{x) = e Du q{x) 

determines the transformation law of the colour gauge fields 

\ ).k l -1 
g A' = U Sg A ~ - i a SU µ,k 2 l µ,k c. µ 

the sum is over k = 1,2, ... 8 

(IV. 32a) 

(IV. 33} 

In order to obtain the gauge field lagrangean we proceed as in § IV. 4. We 
define the tensor : 

Fl.JV >.k 
k ( 2 )ab 

and obtain : 

i 
g 

Fµvk = ~ v Aµk - ~µ Avk + g f Aµ Av 0 0 k.e.n i n ' 

With this term one then obtains the lagrangean 

~. - { ruvk Fuv,k + q l i Yu Du - m I q 

or if we include all quark flavours f = 1, ... n: 

(IV. 34) 

k = 1, ... 8 

~=-i n 
r 

f=l 
ijaf I i Yu (Dµlab - m 6ab I %f 

(IV. 35) 
theDirac spinor indices being omitted . 

. 
The inflnitesimal transformation law of Fµ: is 

F.µv - Fµv g f A Fµv 
k - k - kin t n (IV. 36} 

Th' · ).k 1 
S lS the 1 aw Of transformation Of a chromo-vector, like that Of q '2'""° q, to 

first order in g. 
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In the quantized form of the theory, one needs to add two other 
terms, the gauge-fixing and the so-called Fadeev-Popov term or ghost terr.1*. 

The colour gauge field, or gluon field, is thus a set of eight mass­
less vector fields in interaction with themselves and with the quarks through 
their colour degree of freedom 109- 133 >. 

The equations of this system, ignoring the Fadeev-Popov 
terms, are of the form of those in the § IV. 5, namely : 

where 

g ·ll 
J k 

D" ...aB 0B Fva a Bv ki t- i + kt i + D kt F i 

· ll 
J k 

is the current of the matter field only. 

0 ' 
(IV. 37) 

* The gauge fixing term is - ---2
1 (a all ) 2 similar to the term (II. 22) in 
a ll k 

electrodynamics. However, contrary to the case in electrodynamics, no simple 
restriction on the gauge functions ~{x) similar to equation (II. 19b), 

can be found in chromodynamics. Scalar and longitudinal gluons are only 

cancelled if a second term is added of the form - a ti\+(x) Dµ <Pk(x) where 
in { ) • h 1 µ • ~k x are eig t sea ar (ghost) fields quantized according to the Pauli 

principle (therefore, with negative metric in Hilbert space) and 

(Dµ <P\ = (al.1 oki - ig fkin al.1 n) <Pt (x). 
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PROBLEMS 

IV - 1. Let the three 2 x 2 hennitian matrices Tk with complex elements, 
such that : 

k, R. = 1,2,3. 

Show that a) Tr (Tk) = 0 

b) det (Tk) = - 1 

c) by choosing T3 diagonal and of the form T
3 

= (6 -~) what 

is the most general fonn for Tl and T2 ? 

IV - 2. Let the eight 3 x 3 hennitian matrices Ak with complex elements, 
such that : 

[~ 

[ ~' ~] . An c. c. = 1 f k.e.n 2 , k, .e., n = 1s2 s • • • 8, 

where the totally synJ11etric coefficients dk.e.n and the totally antisymmetric 
coefficients f are given as follows 

kR.n 

1 
dl46 = dl57 = - d247 = d256 = d344 = d355 = - d366 ? - d377 = "'2" 

d11a = d22a = d33a = - daaa = _!_ 
13" 

d448 = d558 = d668 = d778 = - ~1~ ; 
2/l 

f 123 = 1 ; 
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1 
f 147 = - fl56 = f246 = f257 = f345 = - f367 = 2 

15 
f 458 = f 678 = -z-

Show that : a) Tr (Ak) = 0, k = 1,2, 8 

show that : 

b) Tr (Ak A1} = 2 okt for k, 1 = 1,2, ... 8 

c) det Al = det A2 = det A3 = 0 ; 

d} the matrices A1, A2, A3 can have only the numbers 
as eigen values ; 

e) if A3 is taken as diagonal and of the form : 

( 
1 0 0) 

A3 = 0 -1 0 

0 0 0 

( 
1 0 0) 
0 1 0 

0 0 -2 

( 

0 0 

0 0 

e-ia 0 ( : :-ia :ia) ; 
(

0 0 
0 0 

ie-ia O 
'A.7 = (: 00 o. ia) -1e 

ie-ia 0 

where a is an arbitrary phase factor usually assumed zero. 

0, 1, - 1 
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IV - 3. Derive the transformation law for the vector gauge field Aµa(x) 
(IV. llb). 

IV - 4. Given the 2 x 2 antisyrmnetric unitary matrix C such that 

t 4 -1 4 
T = - C T C 

and the transformation operator 
4 

U(x) = exp (ig A(x) • ~) 

deduce the transformation law for an isovector 
4 

f (x) 

f'k(x) = aki f1{x) 

a) Find akt in terms of U(x) and the T matrices. 

b) What is the form of akt for infinitesimal transformations ? 

IV - 5. An isospin spinor-vector can be defined as 

= f (x) • (~) 
a be 

a, b, c = 1,2, where ~ b is totally synunetric in its indices. a c 
a) Which conditions on 1 reduce its six components to four independent 

a 
components (corresponding to isospin ~) ? 

b) What are the finite and the infinitesimal transformation laws of fa ? 

IV - 6· Show that if the field 

Fµvk = av Aµ - aµ Av + g £ Aµ Av 
k k kin i n 

vanishes in all space-time, the potential 

Aµ = aµ µ 
a Aa + g ~abc Ab A c 

Aµ can be expressed as a 

and therefore can be transformed away by a gauge transformation. 
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IV - 7. From Dirac's equation for a spinor field ~{x) in interaction with 
a Vang-Mills field deduce the second order equation for ~ 



CHAPTER V 

The Gravitational Gauge Field 
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V. 1 - INTRODUCTION 

The relativistic theory of gravitation was, after Maxwell's theory 
of the electromagnetic field, the second historical example of a gauge field 
theory. It was the achievement of Einstein's efforts, between the years 1905 and 
1915, to generalize his special theory of relativity and answer the following 
question : should the independence of the physical laws of the state of motion 
of laboratories be restricted to uniform translations of laboratories relative 
to each other ? By taking into account the old empirical fact that the inertial 
mass of a body is equal to its gravitational mass, and by assuming that the 
physical laws ought to be independent of any state of motion of the laboratory, 
Einstein discovered the principle of equivalence and was led to postulate that 
the gravitational field is described by the metric tensor g (x) which detennines 

µv 
the Riemannian geometry of space time. Thus the general theory of relativity 
which he looked for turned out to be the relativistic theory of gravitation. The 
geometry of space-time supplies us with the objects, the Riemann tensor and 
its contracted forms, necessary for the generalization of Poisson's equation. 
Einstein's gravitational field equations relates these objects to the energy­
momentum tensor of all the other fields and therefore unifies the geometry of 
space-time and gravitational dynamics. 

In this Chapter, we shall briefly review the foundations 173- 177 ) 
of this theory by following a method similar to that of the previous chapters. 

V. 2 - GROUPS OF LOCAL TRANSFORMATIONS AND COVARIANT DERIVATIVES 

The need of covariant derivatives in theories involving local 
groups of transformations follows from the fact that field functions taken 
at different points of space-time do not form a linear space under such 
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transformations. Thus a given element U(x) of such a group, which trans­
forms a field w(x) at each point of space-time 

~(x) + $'(x) = U(x) ~(x) (V. 1) 

does not transform a linear combination of fields at different points into the 
linear combination of the transfonnedfields : 

a $(x) + B ~(y) + a U(x) w(x) + B U(y) ~(y) ~ 

F U(x) ) " ip(x) + B <l>(Y) j (V. 2) 

Only locally, for fields at the same point, the linear superposition holds 

a •Cx) + a ~(x) +a U(x) w(x) + a U(x) ~(y) 

(V. 3) 

= U(x) \" l/l(X) + B <l>(Y) l 
Therefore, as the derivative involves the comparison of values of 

the field at different neighbouring points, the ordinary derivative is not 
covariant. 

The introduction of a covariant derivative results then from the 
notion of . parallel displacement of the field. As we want to avoid the sum of 
fields at different points we note that we can define another kind of derivative 
if we substract the parallel ~(x + dx) to the field ip(x) from tP(x + dx). 
Under global transformations, this is what we do for obtaining the ordinary 
deri vat;y Th . 

. e. e parallel to ip(x) at the point x + dx coincides with (transforms 
11 ke) lb ( x) ( f. 

ig. 1). To obtain the parallel, in geometric language we simply 
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Hx + dx) =t1 

x 

,L-~ ip(x + dx) tP(? ~-' x + dx 
a,, 

, 

Figure 1 

ip (x) 
..... ~ IJl(x + dx) 

' \ 
\ 

consider the vectors IJl(x) and ~(x + dx) which make respectively the same angle 
with a given line such as the one which connects the points x, x + dx. 

Now under a local group the parallel ~(x + dx) will be different from 
(transforms differently from) w(x), so we set : 

~(x + dx) = w(x) - i g A (x) T ~(x) dxµ µ,a a 
(V. 4) 

where the Ta are the generators of the infinitesimal transformation U(x) 

(sum over a) (V. 5) 

The field Aµ,a(x) appears as an affine connection similar to the one in 
Riemanian geometry. 

As ~(x + dx) transforms like ip(x + dx), the covariant derivative 
is then defined by subtraction between ip(x + dx) and ~(x + dx) : 

Dµ IJl(x) • dxµ = ip(x + dx) - $(x + dx) 

) aµ "1 + i g Aµ,a(x) T0 "1 l dxµ 
(V. 6) 



In the preceding chapters, we had 

for the SU(2) group, 

Aa 
Ta= 2' 

a = 1,2,3 

a = 1, ... 8 

for the SU(3) group and 

for the electromagnetic U(l) group. 
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The covariant derivative is so chosen that it transforms like $(x) 

0' $'(x) = U(x) 0 $(x) 
1J 1J 

(V. 7) 

which entails for A (x) the transformation law 
µ,a . -1 

A'µa Ta= U Aµb Tb u-l +~(aµ U) U 

A1 T =A T - i g A [Ta' Tb] µ,a a µ,a a µ,a 
or i u-1 u Ab + g aµ 

(V. 8) 

for infinitesimal transformations (V. 5). 

If 

(V. Sa) 

are the commutation rules of the generators, then 

A' = A C J\ A µ,a µ,a - aµ Aa - g abc b µ,c 

The vectors under this group will transfonn like 

+ + A ,,,+ T lJI 
lP Ta tJi -+ "1 Ta tP - 9 Cabe b "' c (V. 8b) 

under transfonnations (V. S), v. Sa). 

If the transformations U(x) form a group with n parameters, this 
group will have n generators and there will be n gauge fields. 
OFT· L 
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V. 3 - COVARIANT DERIVATIVES OF TENSORS IN GENERAL RELATIVITY 
THE GRAVITATIONAL GAUGE FIELD 

In general relativity the principle of general covariance requires 
the physical equations to be invariant under general transformations of the 
coordinates : 

where the functions fµ are four independent real functions of xv, that is, 
their Jacobian does not vanish 

J - I ax,µ I "# o 
axv 

so that equation (V. 9) can be inverted. 

( V. 9a) 

The differentials dx'µ and dxv are related by the equation 

(V. 10) 

A contravariant vector is then defined as a set of four functions 
which transform like the differentials above 

F'µ(x') = ax'µ Fv(x) 
ax\) 

(V. 11) 

and a covariant vector ~ (x) by the condition of invariance of the scalar 
µ 

product with any contravariant vector 

~I µ I 

F'µ(x') ~" (x') = ~ Fv(x) ~ (x') 
µ axv µ 

I~ 
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This requires that 

~,_,(x} = ax'µ ~·(x} 
ax" 

or 
<§'' (XI) ax" ~(x) (V. 12) =--µ ax'µ v 

The metric, as is we 11 known, is now a (symmetric in its indices) function of 
point in space-time gµv(x) and the line element is : 

ds2 = g (x) dxµ dxv (V. 13) µv 

A tensor of order m + n, m times contravariant and n times 
covariant transforms then like 

µ 
ax' m 

e e 
al ··· ~ ax 1 ax n 

TB1 ••• Sn (x) -"- ••• -V-

ax' 1 ax' n 

(V. 14) 

To the metric tensor is associated the co-factor of 9µ)x), .6.µv (x}, such that 
the quantity : 

µv _ Aµv 
g (x) u - g' (V. 14a} 

is a synrnetric contravariant tensor and satisfies the relation at each point x 

(V. 15) 

Clearly, as in equation (V. 2), the vectors in this space form a 
linear space only locally : 

(V. 16) 
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this superposition does not hold for vectors at different points of space-time. 
One then needs to define the parallel displacement of a vector by an equation 
similar to (V. 4), and we shall write 

(V. 17) 

The covariant derivative of a vector will then be 

vµ P1(x) dxµ ; P1(x + dx) - fX(x + dx) 

so that 

(V. 18) 

The quantities ra {x) the affine connection, or Christoffel symbols, are µv , 
the gravitational gauge fields. The requirement that (V. 18) transfonn like 
a tensor 

(V. 19) 

detennines the transfonnation law for raµv(x) 

r'a (x') ax'a >.. ax~ axn 
µv = ~xA r t"n , • --v 

CJ "' ax'... ax' 
(V. 20) 

Like all gauge fields seen previously, this is also not covariant, 
it does not transfonn like a tensor. 
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To obtain the covariant derivative of tensors we remark the following 
identity 

if the covariant derivative of a covariant vector is 

Now we may write 

Therefore the covariant derivative of a tensor of the second rank is 

In general, we have, for a tensor of any rank : 

+ I I I 

= a rxa n µv 

111 

The affine connection is symmetric in its lower indices 

In fact if one defines the quantity 

(V. 21) 

(V. 22) 

+ 

(V. 23) 

(V. 24) 

(V. 25) 
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its transfonnation law to a new system of coordinates (V. 9) will be 

ip~r = 
ax•a l €nl 

ax~ axn 
aT" -- -ax•µ ax•\) 

ax~ axn a2x,a - ax•µ ax•v ax~ ax11 

that is, this is the same law as (V. 20). Therefore the difference between 
raµv and (V. 25) will be a tensor : 

r~~ -):v ! ' = !:~a [ r~n - ) (~!J !:~µ !:~v 
Now according to the equivalence principle there exists in every point of 
space-time a locally inertial system of coordinates in which the effects of 
gravitation are transforr.ied away, hence ra vanishes in such a system, Vµ µv 
is aµ and the first derivatives of g vanish. Therefore, as the difference µv 
above is a tensor it will vanish everywhere and so : 

ra I a! 1 ga>..(a 9>..v + 3" 9>..µ - a>.. 9µv> - ( µ\) = "2' µ\) µ (V. 25a) 

and 
ra a 

µv r vµ (V. 25b) 

Thus 9µ\)(x) is the gravitation potential in terms of which the 
gauge field is expressed. 
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V.4 - THE LAGRANGEAN OF MATTER TENSOR FIELDS .IN INTERACTION WITH THE GRAVITA­
TIONAL FIELD 

In order to find this lagrangean we have first to look for the part 
of it which corresponds to the gravitational field alone. For this we follow 
the same procedure as that we used for the Yang-Mills and for the electroma­
gnetic fields. We calculate the commutator ~etween the covariant derivatives 
applied to a vector and define the tensor~~ (x) by the equation : 

allV 

A 

!JR avll FA ( x) = [ V ll , V v] Fa ( x) ( V • 26) 

We obtain 

(V. 26a) 

this is a fourth-rank tensor, the so-called Riemann curvature tensor which 
satisfies the following relations : 

~\ 92). 92). 
~ + + - 0 avµ µav VJ.la 

and if 

!JR 
13avµ = 913).. !JR >.aw 

then 

!JR 
13avJ.1 92aBw 

!JR l3allV - !JR13avµ (V. 26b) 

!JRBavµ = !JR vµBa 
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These equations reduce the number of components of this tensor from 
256 to only 20 independent components. 

What is the invariant space-time volume element over which we must 
integrate the lagrangean to get the action in relativistic theory of gravitation ? 

As the metric tensor transforms like : 

g I {x I) 
µ\I 

ax8 

ax'v 

we have for the determinant of gaB the followinq transformation 1aw 

g· I~ 12 
g 

ax• 

where 

g = det gaa 

therefore, according to (V. 9a) 

g = J2 g• 

As 

we see that 
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is the required i n variant volume (the - sign is for the limiting case of 
a flat space where 

1 0 0 0 

T\:tS 
0 -1 0 0 , det 1 nas = -
0 0 -1 0 

0 0 0 -1 

To obtain the action for a vector field f'l(x) in interaction with 
the gravitational field we first replace the ordinary derivatives of fl(x) 
by the covariant derivatives, in the free field lagrangean for f<l : 

(V. 26c) 

Then we fonn the scalar curvature c9f from the Riemann tensor, that is 

~lJ\I (V. 27) 

and 

(V. 27a) 

The action is then 

(V. 28) 
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V. 5 - EINSTEIN'S EQUATIONS OF THE GRAVITATIONAL FIELD 

To obtain the gravitational field equations from a variation princi­
ple with the action {V. 28) it is usual to write the coupling constant 

where ~ is the gravitational constant, in an explicit form in (V. 27) 

(V. 28a) 

The variation principle assumes 

0 s = 0 (V. 28b) 

for arbitrary variations o gµv, o aa 9µv which vanish at the boundary of space­
time. 

We have : 

0 sg == f d4x ~ r-g gµv 0 !JP. + ~ r-g 0 gµv + 
~ µv µv 

(V. 29) 

Now in a locally inertial coordinate system, the affine connections vanish so 
that {see {V. 26a)) : 

o ~µv = o(aA rAµv) - o(av rAAµ) 
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In this system the ordinary derivatives coincide with the covariant derivatives 
so : 

and this relationship is general since both sides of this equation are tensors. 

- The first integral on the right-hand side of (V. 29) may be written : 

(V. 30) 

This is so because the covariant derivative of gµv vanishes 

since it vanishes in a locally inertial coordinate system at any point. Now 
o rAµv is a tensor hence one can write 

where AA and BA are two vectors. 
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The divergence of a vector is : 

A 1 A <\ log Fg) A = - a>i. (A A ) 
r-g 

since 

Therefore (V. 30) can be transfonned away : 

= J·dav (Av - Bv) /=g = 0 

boundary 

This integral vanishes because o gµv and o rA vanish at the boundary. 
llV 

The third term on the right-hand side of equation (V. 29) is 

since from (V. 14a) one deduces 

a B 
g = I: g /). 0 

B aoS 

(which is the development of g according to the element of a line a0 ) and 

(V. 31) 
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so that 

r-= a ( /=Qg ) µv 1 1 a g µv 
o(l'-g} = o 9 = - 7) - -- o g = 

a gll" ' l=Q" a gµ" 

1 r-= µv = - ,,.. )'-g g 0 g 
' µv 

Collecting the terms of o S we thus have : g 

Let us calculate o SF. One has : 

Now 

Therefore 
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The energy-momentum tensor of the matter field is defined by 

(V. 32) 

so that 

(V. 32a) 

According to equations (V. 28a), (V. 28b) one will then have 

(V. 33) 

which entails, for arbitrary variations o gµv (vanishing at the boundary) 

(V. 34) 

which are Einstein's equations for the gravitational field. 

E. t · n • s equations are From the equations {V. 26),{V. 27) we see that ins el . 
linear in the second-order derivativesofthe metric field gµ)x) but non-linear in 

gµv and its first derivatives. The non-linearity character of Einstein's 
equations (see equation {V. 26a), notably the bilinear tenns in r) results 
from the self-interaction of the gravitational field : the energy-momentum 
tensor is the source of the gravitational field ; as the latter clearly carries 
energy and momentum it contributes to its own source just as a colour or an 
isospin gauge field having colour or isospin contributes to its source, the 
current. 
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V. 6 - THE ENERGY-MOMENTUM OF THE GRAVITATIONAL FIELD 

·• 
The equations (V. 34) correspond to the equations (IV. 22a) for the 

Yang-Mills field : in both, the right-hand side contains only the part of 
the source due to matter : the matter energy-momentum tensor in (V. 34) and 
the matter current-vector in (IV. 22a). And in the same way that the latter is 
covariantly conserved, equation (IV. 23b), so is the matter energy-momentum 
tensor : 

(V. 34a) 

(Note that the covariant conservation of the matter sources contain tenns 
coming from the field interaction). 

This equation is in accord with Einstein's equation (V. 34) and its 
imposition was a guide for the search for a tensor : 

G - t151J _lg ~ µv -~ µv "2' µv (V. 35) 

with vanishing covariant divergence 

(V. 35a) 

To show that equations (V. 35), (V. 35a) are indeed satisfied, we 
consider the expressions (V. 26) of the curvature tensor and take its derivative 

vs ~Aaµv = vs l aµ rAav - a" rAaµ l + (Vs rnavl r\µ + 

+ rnav (Va rAnµ) - {Varnaµ> rAnv - rnaµ (VB rAnv> 
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Now in a 1 ocal ly inertia 1 frame, the affine connection 
and so we have 

In this frame therefore the following relationship holds 

fiJA fiJA >. 
v t.:7'C + v t.::7i + = B aµv v aBµ V ft av.B O 

vanishes 

which are the Bianchi identities (see equations (IV. 23), (IV. 23a) for the 
case of the Yang-Mills field) As the left-hand side is a tensor, this equation 
remains true in whatever system of reference. 

The contraction of the indices >. and µ gives (see (V. 26a) and 
(V. 27)) 

and a new contraction : 

Va !YI - V !Y;a - 'i/ !Y;lJ = 0 
.., a B µ B (V. 36) 

The latter equation results from the fact that 
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since the covariant derivative of the covariant and contravariant metric 
tensors is zero 

{V. 37) 

This equation expresses the fact that in a locally inertial frame this 
covariant derivative vanishes and so it vanishes always since it is a tensor. 

Therefore, from (V. 36) we get 

vs;, Cl 1 Cl v?/1 
Va(../2:" B - "2' o B ~) = 0 (V. 37a) 

which proves (V. 35), (V. 35a). 

Now we should like to show that Eistein's equations can be written in 
a form in which the energy-momentum of the gravitational field is exhibited 
and added to the matter energy-momentum. The equations we shall obtain correspond 
therefore to the equation of the Yang-Mills field (IV. 18) namely : 

where the current above is the total current given by (IV. 19). 

For this purpose we write for the metric tensor 

(V. 38) 

where huv(x) vanishes at infinity so that far away from matter the metric 
tends there to the flat-space metric n . 

UV 

GFT - M 
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As the curvature tensor is, according to (V. 26a), (V. 2Sa) 

the substitution {V. 38) will give 

.9I'Aavµ = { ) aa aµ hAv + a" aA haµ - a" aa hAµ - aA aµ hav l + 

l r s rE rB rE ! + + nBE AV aµ - AU av 

We separate the terms in .9I' which are 1 i near in hµv 
av 

fiJ(l) - 1 ~ A + h A - a a hA -
~ av - "Z ~ 0a aA h v av aA a v a A 

(V. 39) 

- aA aA hav l (V. 39a) 

from the other terms in~ and g .9I', and we call these : 
av _ uv 

t =-.! ~ -lg g;_ .9f +ln ~-l fiJ (1) fiJ. (1) I 
a.v - K av c. av av c. av 

(V. 40) 

(the indices in h , fiJ(l) and a, are raised and lowered with na", 
av ~ av " 

the indices on the full .9'l are of course raised and lowered with 9,.a) 
µa ... 
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Einstein's equations (V. 34) assume therefore the form : 

!JP(l) aB 
= Tl 

!JP(l) 
aS 

(V. 41) 

These are important because they exhibit the form of an equation for 
a spin 2 field generated by a source which contains a part arising from the 
field itself (see equation (I. 8)) : 

= - K (T + t ) 
av av 

The inter~retation of this equation is this the quantity 

(V. 42) 

T = T + t (V. 43) av av av 

is the total energy-momentum 11 tensor 11 of matter and gravitation, tav is the part 
corresponding to the gravitational field. The term tensor is under quotation 
because tav does not transform like a tensor under general coordinate 
transformations. This is, however, similar to the case in the Yang-Mills 
field theory. In the equation (IV. 18), the right-hand side does not transform 
like an isovector (or a chromovector) but it is composed of the matter current 
which is an isovector and a field current which is not an isovector ; thus 
the total current 11 vector 11

, as well as the Yang-Mills vector field Aµk have 
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the transformation laws given in equations (IV. 19a) and (IV. 13) and the tenns 
in aµ Aa are the ones which make them not to have an isovector character. Here 
both the gauge field ra and the source are also not generally covariant. 

µ'V 
From (V. 42) it follows that 

(V. 43a) 

and so the total energy-momentum is conserved in the usual sense. Thus : 

(V. 43b) 

is the conserved total energy-momentum "vector" of the system matter and gravita­
tion. P0

, in particular, is always positive and is zero only for empty space. 

As Tav is synmetric the angular momentum tensor density 

t·fl"A = Ta). x" - Tav XA 

is conserved : a Mav). = O, and 
Cl 

is the total angular momentum of this system. 

(V. 43c) 

(V. 43d) 

Although not covariant under the general coordinate transformation 
group, Tav' tav and PA, rlf1"A, J"). are covariant under the Lorentz group. 

Thus despite such non-covariance, these quantities are conserved, 
Lorentz-covariant and also, as it can be shown, additive. In particular, pA 
plays the role of the usual momentum vector in collisions between systems which 
come from infinity and go to infinity after interaction. 
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V. 7 - GRAVITATIONAL INTERACTION WITH AN ELECTROMAGNETIC FIELD 

This is the simplest example of the interaction of a tensor field 
with gravitation. 

Maxwell's equations for an electromagnetic field in the presence of 
gravity are, according to the prescription given in (V. 26c) 

V F + V F + V F 0 a µv v aµ µ va 

The lagrangean L in equation (V. 28a} is, in this case 

L = - i F gµa gvS F (V. 44a) 
~ µv aS 

and the reader will then find that the energy-momentum tensor given by (V. 32} 
to be inserted in equation (V. 34) is : 

T = 1 F gA~ 9an F g _ F 9aa F 
µv tT Aa ~n µv µa vB 

(V. 44b} 

and is such that : 
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V. 8 - THE TETRAD FORMALISM 

In order to consider spinors in general relativity it is convenient to 
introduce the notion of tetrad or 11 vierbein 11

• 

The line element at a point M is 

ds2 = g (x) dxµ dxv µv 

where dxµ is a vector between the point M and a point in its neighbourhood. 
According to the principle of equivalence, we may choose at every point M of 
space-time a locally inertial system of reference, where gravity is locally 
transformed away {freely falling frame) and in this system the line element has 
a Minkowskian structure : 

ds2 = nab d~a d~b 

where d~a is a vector between the point M and a point in its neighbourhood 
in this system. 

If we call 

we then have 

Here 

Tlab 

1 0 

0 -1 

0 

0 

0 

0 

0 0 -1 0 

0 0 0 -1 

(V. 45) 

(V. 45a) 
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is the flat-space metric and the latin indices a,b, ... run from 0 to 3 
but refer to coordinates in a freely falling reference frame. 

In the latter frame 

d2 E; a 
= 0 7 

so that 

d ( a~a axµ) 0 Os axµ as 

gives 

d2 x A 
+ rA dxl..1 dxv = 0 7 1.JV as as 

where 

rA 
1.JV{X) 

ax A a-2 E; a 
a E; a axl..1 axv 

If 9µv{x) and rAµvCx) are known at a point M in an arbitrary coordinate 
system xl..1, the locally inertial coordinates E;a{x) in a neighbourhood of M 

can be determined. Indeed the above relation gives the equation 
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the solution of which is 

with 

[ : ~: l x x(M} 

When we change the non-inertial frame xµ to x'µ the coefficients vaµ(x) 
will change as follows : 

~ 
ax' l.l 

Va () XV 

" ax'µ 
( v. 46) 

so these quantities may be regardedasasetof four covariant vector fields, not 
as a single tensor. If a change is made from the chosen locally inertial frame 
to another one at the saMe point ~' va (x) will change by a Lorentz trans-

µ 
formation 

the Lorentz coefficients 51.a 
b 

(V. 46a) 

are then a function of the point M. 
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The functions va {x) constitute the tetrad or "vierbein". 
µ 

Given a space-time tensor we can·tonstruct with 

it a quantity which will be a scalar under general coordinate transformations and 
a tensor under the local Lorentz group at x : 

(x) 

(V. 47) 

The latin indices a,b, ... are raised by means of nab and the 
greek indices by gµv 

(V. 47a) 

The invariance principle is now stated as follows : 1) the action must 
be invariant under the group of general coordinate transformations and the fields 
are represented by entities which are scalar under this group ; 2) the action 
must also be invariant if ~teach point of space-time we change the locally inertial 
frame of reference by the Lorentz group of transformations. 

Thus the physical fields will be scalars or tensors under the general 
group of coordinate transformations and scalars or tensors or spinors under the 
local Lorentz grou~. A Dirac spinor, in particular transforms like 

{V. 48) 
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and 

~(x) ~ w'(x') S(i(x)) ~(x) 

if the inertial frame at x is changed by ta8(x). 

Let us consider the action (V. 28). It can be written 

where, according to (V. 45a) : 

v(x) = det (va } = l=g' 
µ 

(V. 49) 

The variation of S corresponding to a variation cS vaµ of vaµ(x), 
which now describes the gravitational field, will be : 

T " l o vb - K b V (V. 49a) 

and vanishes for arbritary o vb (which are null at the outer surface). One 
. " then obtains Einstein's equations 

(V. 50) 
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where 

J1Pb v = _gf µv 

and 

T µ 1 
a v (V. 51) 

In the case of the electromagnetic field one finds 

Ta = 1 F 9>.a 9va F va _ F v a ab 9vs F 
µ lf' A\) as )J )JV b 11 as 

so that 

Taµ therefore gives rise to the electromagnatic field tensor (V. 44b). 

V. 9 - DIRAC'S EQUATION AND CURRENT IN GENERAL RELATIVITY 

Let us now consider a spinor ~(x), that is, a field the transfonna­
tion laws of which are those in (V. 48). 
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Its covariant derivative will be defined by the introduction of four 
4 x 4 matrices r µ(x), functions of point, the spinor affine connection : 

(V. 52) 

The Lorentz-vector and coordinate-scalar derivative operator will be 

a = 0,1,2,3 (V. 52a) 

If at each point x, tjJ(x) transforms according to the spinor repre­
sentation of the Lorentz group, in correspondence to changes in the locally 
inertial frame : 

$'(x} = S (!(x}} $(x} 

then the condition of covariant transformation of the derivative gives 

v•al'(a',, + r',,(x)) ~I n b µ S( ) ( ( )) ~ ~ o/ ~a vb 1 aµ + rµ x tlJ 

hence 

(V. 53) 

in correspondence to the above change of locally freely falling system. 
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With the derivative (V. 52), (V. 52a), we are tempted then to postulate 
the following Dirac's equation for a massive spin 1/2 particle in interaction 
with the gravitational field : 

(V. 54) 

This equation can also be written in the following way, where no 
mention is made of the tetrads : 

{V. 54a) 

where 

(V. 55) 

are four point-dependent matrices which obey the co1TUTiutation rule 

(V. 55a) 

if the Ya's are the usual, flat-space, Dirac matrices 

The gravitational field, which acts on the ~ field is contained in 
the matrix rµ(x), which must vanish in flat space. In order to distinguish 
the Dirac matrices in equation (V: 54) from those which depend on x, we 
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shall always make explicit this dependence. Thus, at each point x, we define 
the adjoint : 

- + 0 l!J{X) = tlJ {x) Y 

where r 0 is the usual Dirac matrix and similary we define 

{Vµ tlJ) = a ij; + ij; f {x) µ µ 
(V. 56) 

where 

(V. 56a) 

As ${x) tP(x) is a Lorentz-scalar and a coordinate-scalar we have in a 
locally inertial system, the identity 

In an arbitrary system we must have 

and this requires that : 

r (x) = - r {x) 
l..I µ 

./i 
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Thus if Dirac's equation is 

(i yµ(x} (a + r (x}} - m} w(x) = 0 
µ µ (V. 57) 

its adjoint will be 

or 

(V. 57a} 

What is the current and which conservation law does it obey ? 

From the two equations (V. 57), (V. 57a} we deduce the relationship 

(aµ 'ijj) yµ(x} w{x) + 'ijj(x) yµ(x) aµ w(x) + 

+ 'ijj ( x) [ yµ ( x) , r µ ( x) J _ w ( x) = 0 

Now the expression : 

W(x) yµ(x) w(x) - iV(x} v/(x) ya w(x) 

is a four-vector under general coordinate transformation (see (V. 48) and 
(V. 46) therefore its covariant derivative is : 
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Thus if the matrix r (x) satisfies the following equation 
lJ 

(V. 58) 

then the current four-vector will be conserved according to the equation : 

The equation (V. 58) follows from the equation for the derivative of the 
metric field (V. 37). 

Indeed if we replace 
equation (V. 37) we obtain : 

g (x) by the anticommutator (V. 55a) in 
UV 

r Cl [ ( ) ( )~ ra [Y ( x) Y ( x )1 = O 
- Al.I Ya x ' Yv X 'J + - AV µ ' a ~+ 

and this equation will be satisfied if there exists a rµ matrix which 
satisfies equation (V. 58) and : 

(V. 58a) 
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This shows that the transition from Dirac's equation in flat space to the fonn 

(V. 54) is correct since 

V. 10 - THE DIRAC FI ELD ENERGY-MOMENTUM TENSOR 

The lagrangean which generates the equations {V. 57) and which 
enters the action (V. 28a) is : 

(V. 59) 

For the calculation of the variation of the lagrangean with respect to a varia­
tion 6 gµv of the gravity field : 

(V. 60) 

we need to know 6 yµ(x) and o r (x) as a function of g {x) and its 
d . . µ µv 
er1vat1ves and variations. 

From the anticommutator (V. 55a) we get : 

(V. 61) 

The solution of this equation is 

(V. 6la) 

'3FT - N 
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From the equation (V. 58) we obtain : 

aA & Yµ + (& rµ Avl v" + ru Av & v" + [ r A• & Yµ ]_ + [ & r A• Yµ J _ = o 

which, together with (V. 6la) a~d (V. 58), gives 

the solution of which is 

(V. 62) 

where 

and 

We are now in possession of o yµ, equation (V. 6la), of o ra' 
equation (V. 62), and of 0 rB 

µa 
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After substitution of these expressions in (V. 60), partial integra­
tion of the tenns with (a o g, ) and similar ones, one obtains, by comparison µ l\a 
with (V. 32a) : 

the following expression for the Dirac energy-momentum tensor 

for fields which are solutions of equations (V. 57) and (V. 57a). 

V. 11 - GAUGE FIXING CONDITIONS 

As a result of energy-momentum covariant conservation, equations 
(V. 34a), there are only six independent equations out of Einstein' s equations 
(V. 34). Four conditions have therefore to be imposed in order to complete 
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to ten the number of equations needed to determine the ten components of 
9µv(x). As gauge invariance is here associated to arbitrariness in the coordi­
nates the gauge fixing condition amounts to making a particular choice of 
a coordinate system. 

A popular choice are the harmonic coordinate conditions 

PROBLEMS 

V - 1. a) Show that the contraction of the affine connection is 

where g(x) = det (g (x)) µv 

b) Calculate the gravitational convariant divergence of a vector A a{x) 
c) Calculate the covariant dalembertian of a scalar field 

o~{x) =Va (gaA(x) aA ~(x)) 

d) show that 

what is the formula for an antisymetric tensor ? 

V - 2. a) Deduce another form of Einstein's equations 

R - 1 -µv -z guv R - K Tµv 

in terms of lµv and the trace T = Tu 
µ 
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b) Apply it to the case of the gravitational field generated by the energy­
momentum of a Yang-Mills field ; what does it have in common with the 'equation 
of the gravitational field generated by an electromagnetic field ? 

V - 3. Deduce the equation of the geodesic from a variational principle 

0 s = 0, 

s I [ dzlJ dzv ] 112 
gµv(z) as as ds 

for arbitrary variations o za(s) which vanish at the boundaries of integration. 
Interpret this equation as an equation of motion of a classical particle. What 
is the force acting on the particle ? What relationship between gravitational 
and inertial mass does it imply ? 

V - 4. Show that a matter field tensor T (x) cannot be the source of gravita­µv 
tion in a two dimensional space-time. 
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CHAPTER VI 

Weak Interactions and Intermediate 
Vector Bosons 
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VI. 1 - INTRODUCTION 

In the preceding chapters, we have established the basic equations 
for tlie Yang-Mills and the gravitational gauge fields. All these fields are mass­
less . The first theory to be elaborated was that of the electromagnetic field 
and later on the Einstein theory of the gravitational field. We have thus seen 
the foundations for the study of electromagnetic and of gravitational interactions. 

What is the usefulness of the other, non-abelian, gauge fields? The 
developments in theoretical particle physics in the last ten years have led us 
to a successful description of the weak interactions by JTteans of Yang-Mills fields 
Morever, as we shall see, it turns out that this is at the same time a unified 
description of both the electromagnetic and weak interactions in the frame work of 
gauge theory. More recent research work suggests that the strong interactions are 
most likely described by the SU{3) - colour gauge field. The corresponding theory 
is the so-called quantum chrornodynamics. And unification of strong, electromagnetic 
and weak interactions may be achieved in the SU(S) model. Leptons and hadrons are 

also unified in the SU(4) x SU(4) model of Pati and Salam. 

In this Chapter we shall briefly review the form of charged weak 
currentss the current-current Fermi theory and the intermediate vector boson 
version of the weak interaction theory39-l8)_ The Fermi theory was first proposed 
in 1934 ; its final form followed the discovery of parity violation in weak reac­
tions by Yang and Lee and the form of weak currents by Feynman and Gell-Mann and 
Marshak and Sudarshan. The torentz nature of these currents, namely a combination 
of a vector and an axial vector, suggested that the weak interactions might be due 

to an exchange of vector bosons between hadrons and between leptons. 

VI. 2 - CHARGED WEAK CURRENTS 

Weak interactions are successfully· described at low-energies by an 
effective lagrangean which has the form 

L = ~F jµ+(x) j (x) n µ 

(VI. 1) 
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where jµ(x} is the so-called charged weak current. This was shown by Feynman 
and Gell-Mann to have the form V-A {a vector minus an axial vector) and is 
the sum of two parts, one the leptonic weak current £U(x), the other, the 
hadronic weak current hµ{x} : 

In terms of the leptonic fields 

ve{x}, e{x) ; vµ{x), µ(x) ; vT(x), T(x} 

the leptonic weak current has the form : 

tA{x) = {'Ve YA (I - y 5)e) + (vµ YA (I - y 5)µ) + 

+ (v YA (1 - y5)T) + 
T 

{VI. la) 

(VI. lb) 

the points indicating contributions from other possible, not yet known, leptons 
(the theory is not yet able to predict the number of possible leptons). 

The hadronic weak current cannot be expressed in terms of observed­
hadron fields in a simple way in virtue of the strong interaction between 
these fields. One studies symmetry and algebraic properties of hA{x) and its 
matrix elements between known initial and final hadronic states can be expressed 
in terms of kinematic variables and dynamical form factors in a Lorentz covariant 
form. 

The low-energy hadronic current h'A(x) for ordinary and strange 
hadronic matter has the form : 

a'(o)(x)) + sin ec (v'(i){x) -

_ a'Cl){x)) (VI. 2) 

where the subscripts (0) and (1) refer to strangeness changes 6S = 0 and 
65 = 1 respectively : ec is the Cabibbo angle : sin ec ~ 0.21. 

relations. 
These currents satisfy the chiral SU(3) I SU(3) conunutation 
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If Fa' a= 1, ... 8, are the generators of the SU(3) group 
which satisfy the algebra : 

,.A 
then there exists an octet of vector currents V a(x) under SU(3) such 
that : 

There is also an octet of axial currents A.Aa (x) such that 

and the generators F 5 together with F form a closed algebra defined by a a 

[ Fa(t}, Fb(t)] = i fabc Fc(t) 

[Fa5(t), Fb5(t)] = i fabc Fc(t) 

[Fas(t), Fb(t)] =; fabc Fcs(t) 

(VI. 3c) 

This is the SU(3) I SU(3) algebra which is also expressed by the 
left and right generators 

F8 L(t) ={ \Fa(t) - Fa5(t)! 

FaR(t) = { \ Fa(t) + Fas(t) \ 

(VI. 3d) 
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which obey the conunutation rules : 

(VI. 3e) 

One has then 

The vector currents v•A(O)(x) and v•A(l)(x) in equation (VI. 2) are then 

The hadronic currents are expressed in terms of the fields which 
d . 
escr1be the quark constituents of hadrons. 

addition 
is 

In the preceding case, in which only strange matter was present in 
to ordinary hadronic matter, the current in tenns of the quarks u,d,s 

(VI. 4) 
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In the caseinwhichwe considertheordinary,strange and charmed 

hadronic matter, fanned by the quarks u,d,s,c, the charged weak current of ha­
drons is : 

hA(x) • U(x) yA(l - r 5) l d(x) cos ec + s(x) sin eel + 

+ C(x) yA(l - y5))-d(x) sin ec + s{x) cos eel 

(VI. 5) 

The following are the selection rules which these currents give 
rise to : 

Transitions with 

!J. c = 0, /J. s = 0, A Q = 1, !J. I = 0, 1 

fl c = 0, fl s = fl Q 1 , fl I 1/2 

fl c = 1, fl s = 0, fl Q = 1, fl I = 1/2 

fl c = 1, fl s fl Q 1 'fll=0,1 

that is, 

h).(x) = l (v). -a).)6s = 0 + (v). ..,A>11s " 1 l cos ec + 
6C = 1 Ac = 0 

(VI. Sa) 
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The generalized charge operators 

are the generators of the flavour SU(4) group. 

Together with 

they generate the chiral algebra SU(4} ~ SU(4}. 

Calling q(x} the quark field for the quartet u,d,s,c one has 
for these currents 

A - A n 
v a(x) = q(x) y -.,P. q(x) 

(VI. 6) 

a\(x} = q(x) l r5 ,f. q(x) 

Ila 
where -z are the fifteen generators of SU(4) in the 4 x 4 matrix 
representation. Sum over the colours is understood. 

The weak currents are therefore (VI. lb) for leptons and (VI. 6) for 
quarks which enter the expression (VI. Sa). For more than four quarks, 
u,d,c,s,t,b the terms with the Cabibbo linear combinations of d and s in 
(VI. 5) are replaced by u yA(l - y5) d', c yA(l - y5) s', t yA(l - y

5
) b' 

where d 1 ,s 1 ,b 1 are the transfonned of d,s,b by a unitary matrix93 >. 

VI. 3 - THE INTERMEDIATE VECTOR BOSON FIELD 

Let us consider the a-decay of the muon 

(VI. 7) 
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Its amplitude will be given by the following number, if we consider the lagrangean 
(VI. 1) and the currents (VI. lb) : 

(VI. 8) 

The fonn V-A of this interaction suggests that this amplitude 
might result from an interaction between the currents and a vector field WA(x) 
so that instead of the lagrangean (VI. 1) we would have the following one : 

~= g jA (x) WA (x) + h.c. (VI. 9) 

The charged field w>-{x) would thus play a role similar to that of 
the photon field in electrodynamics. With this interaction (VI. 9) the ampli­
tude of the reaction (VI. 7) will be : 

where (~F(x - y))An is the Feynman propagator for a massive vector field : 

(VI. 10) 

mw is the mass of this field and 
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In momentum space we have for S and S' : 

s 

s• 

{2n) 4 o4 {p + p + P- - P ) N.M 
''1..1 e "'e µ 

{2n)4 o4 {p + p + p_ - p) N.M' 
vµ e ve µ 

where N is a nonnalization factor and 

(VI. 11) 

(VI. 12) 

We see that in the low momentum-transfer approximation the two matrix elements 
M~ and M' coincide if 

k2 << m..2 , k = p - p w \)µ µ 

and 

(VI. 13) 

In this way, the Fermi approach being obtained in the domain where 
it is valid, it would be more satisfactory to describe weak interactions by 

means of such massive vector field W (x) -the so-called intennediate vector -------------- µ ·_..!... _______ ..;;._ ___ ..;..;.__ 

boson field. 
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The lagrangean (VI. 9) thus replaces the Fermi current-current inter­
action lagrangean. The total lagrangean of the naive intermediate vector boson 
theory of weak interactions is : 

(VI. 14) 

which replaces the lagrangean of the Fermi theory : 

L - . a - . a GF >. 
F = t .e.{ 1 y a - m1 .e. + r ".e. 1 y aa ".e.+ r q { i Ya a -M)q +- j + j 

i a vi c a l'l >. (VI. 15) 

The lagrangean which results from the Salam-Weinberg theory contains, among other, 
terms of self-interaction between the vector bosons (§VIII. 6). 

VI. 4 - HIGH-ENERGY DIVERGENCES IN THE FERMI AND VECTOR BOSON THEORIES 

The Fermi lagrangean {VI. 15) leads to cross sections for the 
neutrino-lepton scattering which grow with the energy and violate the unitarity 
bound. This difficulty is overcome by the intermediate vector boson lagrangean 
but the latter also leads to difficulties for processes like the production 
of W-bosons in the neutrino-antineutrino annihilation. 

The matrix element for the elastic neutrino-electron scattering due 
to the lagrangean {VI. 1) is similar to the expression (VI. 11) : 

M = (VI. 16) 
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for the reaction 

This gives the following differential cross section : 

d cr(v -+ v.) 
--~ 
d n 

and this becomes, for high energies 

d cr{v -+ v ) __ e e ~ 

d n 
G 2 
F s 

47T2 

The total cross-section is 

for 

For the antineutrino-electron scattering 

-+ v + e e 

the differential cross-section is : 

(VI. 16a} 

(VI. 17) 

(VI. 17a) 

(VI. 18) 

G 2 
F 

%Z 
2 2 (s - me ) 

s 
2 12 1 l ( s - m/) cos e + (s - me ) 

4s"2" 

GFT - O 



which for high energies goes over to 

G 2 
~ F 

41T2 
s(l + cos a)

2 

4 
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s >> m 2 
e 

(VI. 19) 

where a is the scattering angle in the center of mass system. The total cross 

section is, for high energies 

(VI. 20) 

The fact that the two cross-sections, one for v -+ v • the other for 
- e e 

v e -+ v e' differ, can be understood by the fol lowing argument : for very 
high energies, the electron mass will be negligible and this particle will be 
left-handed. As v is left-handed, it follows that the component of the total 

e 
angular momentum on the momentum direction in the center of mass system 
vanishes : 

+ + 
p" Pe 

<: ) 
+ 

je J 

" 
hence only s-waves contribute to a in (VI. 17). 

For the reaction (VI. 18), on the other hand, the antineutrino is 
right-handed, hence the total angular momentum over the momentum direction 
wil 1 be one : 

( 
+ 
J­

V 

> 
Therefore the p waves contribute to a in (VI. 19). 
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Now the unitarity of the S matrix implies an upper bound for cross­
sections and in the case of S-wave scattering this is 

d a < 1 

d n f 
in the center of mass system where s ~ 4 p2 {mass neglected). Therefore this 
bound is attained by the cross-section {VI. 17) when : 

that is, 

that is, 

for the 

p2 

2 s F:;$ 4 p 

center of mass system momentum 

lT 

~ 

for p ~ 500 GeV. 

This difficulty is eliminated in the intermediate vector boson 
theory. In this case the reaction {VI. 16) has the diagram 

>.-~--<e w+ e 
e 

Figure VI. 1 

while the reaction (VI. 18) is represented by 

Figure VI. 2 
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The amplitude of the latter is 

(VI. 21) 

where 

The term in ka k
8 

in the numerator of the propagator will give 
a contribution proportional to the electron mass in view of Dirac's equation 
for the incoming and outgoing leptons. Thus : 

- 5 a - 5) 
= v"e (1 + Y )(pe)a Y ue = me v"e (1 + Y ue 

m 2 
As this term is thus proportional to e 

-;;:; 
- - "' 4 a (v -+ v ) = L e e s 

we have for high energies 

(VI. 22) 

This s dependence is due to the term in s in the denominator of the propa­
gator. 

We see that instead of growing with s as in (VI. 20), the cross-
1 

section for antineutrino-electron scattering decreases with s as s · 

Some conunents are needed now on the origin of the energy dependence 
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of the cross-sections (VI. 17a} and {VI. 20). The reason is that the Fermi 
coupling constant ~F has a dimension of {energy)-2 

(2;? (2;? 2 
Therefore as .:5f'F appears as ~F in first order in the cross-section, 

~F
2 

will have to be multiplied by a factor (energy) 2 in order that the 

dimension i 2 of the cross-section appear 

As at high energies the masses are neglected the available factor is really the 
center of mass energy. 

In higher orders then the energy growth of the cross-section will be 
stronger. When we consider the lagrangean {VI. 14} the dimensionless coupling 
constant g appears in {VI. 21} and the propagator will give the needed 
energy dependence for the cross-section {VI. 22). 

As to the unitarity violation resulting from (VI. 9), it can be seen 
immediately in the problem of the neutrino-antineutrino annihilation with the 
product; on of W bosons : 

the diagram of which is (Fig. VI. 3) 

Figure VI. 3 
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The amplitude of this diagram is : 

M = 

where E+µ' E-A are the polarization vectors of w+ and w- respectively. 

For high energies the cross-sections for production of transverse 
and longitudinal vector mesons are, respectively 

cr (vv + - ~ -+ W T W T) "" 
mw 

+ - 4 s cr (w -+ W L W L) "" ~ ;; 11\l 

The latter cross-section violates unitarity. 

We may, finally, compare quantum electrodynamics with the intermedia­
te vector boson theory. 

Quantum electrodynamics is renormalizable. The divergent integrals 
which occur in higher order perturbation tenns can be eliminated by the 
introduction of a finite number of counter-tenns which is the same whatever 
the order of the calculation and which have the same form as terms in the 
initial, bare lagrangean. This means that it is possible to redefine the 
parameters of the theory -in quantum electrodynamics the mass and the charge­
and the scaling of the fields in such a way as to be left with finite physical 
quantities to all orders. 

The Fermi current-current lagrangean and the lagrangean of the 
intermediate vector boson theory of weak interactions are not renormalizable. 
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It is a necessary condition for the renonnalizability of an interaction 
lagrangean that the coupling constant be either dimensionless or of dimensions 
with positive powers of energy. In the case of the vector boson thenry, the 
coupling constant is actually dimensionless, however, the propagator for the 
massive vector field is 

k2 - m 2 + i E w 

In the case of low momentum transfer, as already remarked, 

the effective coupling constant will be (VI. 13) and so it is the same as in 
Fenni theory. 

For high energies, the asymptotic behaviour of the propagator is 

and again the effective coupling constant is (VI. 13). 

This tenn can be transfonned away in the case of neutral massive 
vector bosons in interaction with conserved currents but is present in the 
case of interactions of charged vector bosons with charge-changing currents. 

Physicists were thus confronted with the following situation : on the 
one hand there exist the vector boson gauge theories which are renonnalizable but 
the gauge bosons are massless ; on the other hand, we need massive vector bosons 
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for the description of weak interactions by field theory but this theory 
is then not renormalizable. 

The solution to this problem was found after the discovery of the 
r0le of spontaneous symmetry breakdown in field theory and the Higgs mechanism 
it was discovered that the renorma 1iz~bi1 ity character of a gauge theory is not 
lost when the symmetry is spontaneously broken but this mechanism leads to the 

introduction of massive vector fields. 

The work of Brout, Englert, Guralnik, Hagen, Higgs and Kibble led to 

the discovery of the Higgs mechanism ; and the work of Salam and Weinberg, and 
of 't Haft, opened up a \'/hole new domain for the theoretical description of the 

forces of nature as different manifestations of basic gauge fields. 

PROBLEMS 

VI - 1. In quantum field theory, the fields are operators defined in a Hilbert 
space of state-vectors lw >. Corresponding to a Poincare transformation of the 
geometrical coordinates, either the operators do not change but the state 
vectors change, and this is the so-called Poincare-Schrodinger representation 

x' =a+ 1 x 4 lw'>s = u (a, 1) lw >s , e's(x) = es(x) 

where a(x) designates a point-dependent operator ; or else the state vector 
does not change, it is the operators that change this is the so-called 
Poi ncare - Heisenberg representation : 

lw'>H = lw >H , e'H(x) F aH{x) 

The equivalence of the two representations is expressed by 
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whence for unitary transformations U(a, t) 

e'(x} = u-l (a, t) e(x) u (a, i) 

From this equation and the expression of U : 

U (a, ~) = exp ) ; aµ Pµ - { "µv Jµv ~ 

where P,, and J are the momentum and angular momentum operators deduce 
... }JV 

the following equations for a Dirac spinor 

[ w(x), plj] = i aµ 1'J(x) 

[ IJl(x), Jµv] = [ ~ + i (xµ av - xv all)] ip(x) 

VI - 2. The global phase transformation of a complex field 

~'(x) = eiea ~(x) 

induces a transformation on the field ~(x) regarded as an operator in Hilbert 
space 

I ( -1 ~ x) = U (x) ~(x) U(x) 

the generator of which is the charge operator Q. Deduce the commutation rule 
between the field operator ~ and the charge Q. 

VI - 3. The effective lagrangean for leptons which interact with an electromagnetic 
field and among the~selves according to the weak current-current coupling is : 

where 
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+ h.c. ; R. = e, µ, T 

is the electro magnetic current of leptons 

(£/ WF A+ • 
.X(w) = n j (w)(x) JA{W)(X) 

·A - A 5 
J (w) = ~ v1 y (1 - y )1 

is the leptonique charged weak current 

a) Write ~in terms of the left-handed and right-handed polarized components 
for all fields i and v

1 
: 

1 5 1 5 $L = "2' (1 - y ) ~ ; $R = "2' {l + y ) $ 

b) show that ~is invariant under the chiral transfonnation 

5 
\)g, -+ - y \)t 

c) show that ~is invariant, in the limit m1 + O, under the unitary 
leptonic group u1 I u2 where 
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where U1 and u2 are arbitrary 3 x 3 unitary matrices. 

d) Under which special choice of u1 and u2 does one have the (µ, e} 
universality, µ t. e, in the limit mµ =me ? 

VI - 4. Consider the lagrangean of the preceding problem. 
a} For which special choice of the matrices u1, u2 does one obtain separate 
conservation of lepton-number currents for each kind of lepton (i, vi} ? 
b) Give the corresponding lepton numbers. 
c) Is the photon decay of muons µ + e + y possible under the separate conser­
vation of lepton numbers ? 
d) Introduce the left-handed isospinor for the lepton i 

, Jl. = e, µ, T 

and the right-handed isoscalar 

R1 = ~ (1 + y5) t(x) . 

What is the form of the preceding lagrangean in tenns of these fields in the 
limit m + 0 ? What is the form of the electromagnetic and weak currents ? 
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e) What are the global phase transformations on Lt and Rt which give rise 

to these currents by Noether's theorem ? 
f) Give the Nother current corresponding to the SU(2) global phase transforma­
tion : 

-+ 

L ( .-+ l ) 
i -+ exp i a • "2' Lt 

and its relation with the weak current. 

VI - 5. The weak leptonic charge is defined from the weak current 

.). - ). 5 
J (w) = i Vt y (1 - y ) t 

by the equation : 

Q(w) (t) = Jd3x jo(w)(x) 

= f d3 x i ! "\ (x) ( 1 - y 5) 1 ( x) l 
The fields are quantized by the anticommutators : 

[ (-+ t) + (-+ 3 [ -+ + (-+ I t ) ] eax, ,e 8 x1 ,t)]+=o(x-x')= "a(x,t),v 8 x, + 

a) Find the commutation relation 

[ Q(w)(t), Q+(w)(t)] 

by using a relation between [AD, BC] and [A, B] + , [A, C] + , [ D, B] + 
and (D, C ]+. 

b) Call 2Q(w)3(t) the above commutator. Find the commutation relations which 
are satisfied by the hermitian operators Kla' a = 1,2,3 where 

Q(w)(t) = 2 (Kll + i KL2) 

L Q(w)3(t) = 4 K 3 
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c) Separate the vector and axial vector parts in Ka, call them Ka and 
K5a and define : 

KR = 1 {K + KS ) 
a 2 a a KL = 1 (K - KS ) 

a 2 a a 

Find the conunutation relations between KRa, Kla, which define a SU(2) ~ SU(2) 
algebra. 
d) What is the relation ship between the electric charge and the total lepton number? 

Give the conunutation relations between the lepton charge Q{y) and the 
operators K. 

VI - 6. a) Given a massive Proca vector field ~µ(x) in interaction with a 
vector current ju{x), write down the equations which generalize Maxwell's 

equations in terms of the fields ?\v) W0
\v), !J61\v) = j e:kR.n 

C2:? tn (v) 
y where ~ = a <f> - a <f> • 

µv v u u v 
b) Obtain similar equations for an axial vector field ,a µ{x) in interaction 
with an axial vector current pµ(x) in terms of the fields 
!J61 k _ ~ ok k 1 a? .e.n . (.b' µv _ 

(a) - (a), ff (a) = "2" e:k.e.n y (a) w1th y {a) -

av Qµ - au Qv. 

c) Assuming the fields in a) and b) have the same mass, obtain the equations 
~hich give a simple model for the intermediate boson field wu which interacts 
with V - A currents. 





CHAPTER VII 

The Higgs Mechanism 
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VII. 1 - THE NOTION OF SPONTANEOUS SYMMETRY BREAK-DOWN 

In order to introduce the Higgs mechanism into the frame of gauge 
theory, let us first examine the notion of spontaneous sy1TUTietry break-dcwn. 

There are examples in nature,of syrrmetries which are not exact 
symmetries of the lagragean of a physical system. Thus the SU(3) group is an 
exact symmetry only if the components of the flavour multiplet of quarks have 
the same mass. To a lagrangean which is invariant under a group we may add a 
"small" term which breaks this invariance and this gives rise to the idea of 
broken symmetries or of almost exact symmetries. 

Thus the lagrangean for three quark flavors, u,d,s assumed to have 
the same mass m : 

3 
L r qf (iy.a - m) qf 

f=l 

is invariant under the flavour SU(3) group 

Ak 
iak. 2 

qf --> e qf 

As the quark flavours have different masses the effective lagrangean will be 
of the form : 

3 
L = r qf {iy.a - m) qf + d {m - md) d + s (m - ms) s 

f=l 

by assuming that m = mu. The additional ter~s clearly break the above invarian· 
ce and the symmetry is the more broken the larger are the mass differences· 
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There is, however, another very important example of broken symmetry : 
the lagrangean is invariant under a group of transformations but the ground state 
of the system -the vacuum state in field theory- is not invariant under this 
group. The well-known example is the Heinsenberg ferromagnet : an infinite 
crystalline system composed of spin - i magnetic dipoles with spin-spin 
interactions among neighbouring dipoles. This interaction, although invariant 
under the rotation group, tends to align the dipoles in a given direction ; the 
ground state is thus not rotationally invariant and is one of an infinite set 
of possible ground states, corresponding to the continuum of directions in 
space. 

Similar is the case of, say, the deuteron ground state. Its hamilto­
nian has a spin term (crp • an> f(r) and a tensor force term which are invariant 
under rotation but the deuteron ground state has spin one and is thus three­
times degenerate. 

Whenever this phenomenon happens -the lagrangean admits of a synunetry 
group but the ground state is not invariant under this group- one speaks of a 
spontaneously broken synunetry. 

Let us now consider the traditional example of a real scalar field 
with quartic self-interaction 

(VII. 1) 

In the classical treatment of this field, the ground state, the state 
of lowest energy, corresponds to the vacuum state in quantum theory. 

The field equations are 

2 A 3 
(o + µ ) <P + 'l! <P = 0 

GFT.p 
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A constant field q>
0

, which does not depend on x, will be a solution of these 
equations if the following relationship holds : 

As the hamiltonian corresponding to the above L is 

ll 2 -+ 2 2 2l A 4 H = "2' n + (~ <i>) + µ ~ + "4! ~ 

where 

n(x) = rP ~{x) 

we see that the solution ~o of equation {VII. 2) is the one which makes the 
potential energy U(~) in (we call potential energy that part of H which 
survives for a constant field) : 

H = i \ ,,2 + (V <1>)21 + u (<1>) 

u (~) = { µ2 ~2 + i! ~4 

a minimum ; as n
0 

= 0, V ~o = 0, ~o gives the minimlBll of the energy H. 

Now as H must be bounded from below, the constant A is positive 

). > 0 

Therefore the position of the minimum depends of the sign of µ2. 

If µ
2 

> 0, then the only solution of equation (VII. 2) is 

~o:::: 0 

and the potential energy U{~) has the form given in the fig. VII. 1. The ground 
state corresponds to this solution ~o = o. 
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Figure VII. 1 

The constant µ plays the rf>le of the mass of the field (of the 
scalar mesons described by cp} and detennines the first tenn in the development 
of U(cp} around the minimum 

Let us now ass!Jrr.e that the parameter µ
2 is negative 

l < 0 

In this case the equation (VII. 2) will be satisfied by <?0 = 0 
but al so by : 

"'a(+) " + ~ - 6;:2 = a (VII. 3) 

or by 

<Po(-} 
(VII. 3a) 
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so that 

The form of the curve will now be given by Fig. VII. 2 

U(q>) 

%(-) 'Po ( +} 

Figure VII. 2 

There are two values of q>, <Po(+) and <Po(-)' which give the minimum of 
U(<i>). 

As the lagrangean is invariant under the transformation 

(VII. 4) 

the ground state is now degenerate and each one of the two possible ground states 
transforms into the other one under this synvnetry. In virtue of this symmetry, 
it is irrelevant which value of <P we choose, <P ( ) or <P ( )' for studying 

0 0 + 0 -
the development of U(<i>), H(<i>) and L(<i>) around the chosen ground state. But 
once we make this choice the symmetry is spontaneously broken. 
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In order to study the behaviour of the lagrangean around the chosen 
ground state we define a new field : 

ti>' = ti> - a (VII. 5) 

where we call a the vacuum state which we choose 

Then we can express the lagrangean (VII. I) in tenns of ~· and get (we drop 
constant terms) : 

(VII. 6) 

where 

(VI I. 6a) 

The transformed field q>' has the properties that we require of a physical 
field : its vacuum state (or minimum energy value of the field) corresponds 
to ~· 0 = 0, its mass is the positive number + ~I and it displays a 
cubic interaction ~ q> 13 besides the quartic coupling. In view of the cubic 
interaction, the lagrangean above is not invariant under the reflection 

and it would be difficult to guess from this lagrangean that it came from 
another one which possessed the symmetry (VII. 4). 

Note that if we want the ground states to have zero potential energy 
4 

we add a constant, ~ µA , to U(ti>) and obtain a function 

A 2 2 2 
Ul~) =-(ti> - a), 

4! 
2 6µ2 

a=--).- >0 
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This example shows us that it is possible to change from the field 
with a mass term corresponding to an imaginary mass to another one with a 
physical mass. 

VII. 2 - GOLDSTONE BOSONS 

This type of considerations leads us to examine the case of sponta­
neous break-down of continuous groups of symmetry. This study gives way to the 
notion of Goldstone Bosons. 

Let us now examine two scalar fields <i>1(x), <i>2(x), the lagrangean of 
which is 

L "~ ~(au ~l)(au ~ll + (au ~2)(au ~2) - µ2 <~12 + ~22) I -
- i1(<P12 + <P22)2 (VII. 7) 

This lagrangean was chosen invariant under the group S0(2) of 
rotations in the plane <P

1
, <t>

2 

<t>'1 = <t>1 cos a - <t>2 sin a 
(VII. 8) 

<t>'2 = <t>1 sin a+ <i>2 cos a 

or 

-sin a ) (<t>1 ) 

cos a <t>2 

(VII. Ba) 
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The potential energy is here : 

and its minimum occurs for : 

iii~ = "'1 ! i + %, (q>l 2 + "'2 2) l = 0 

~~ = "'2 ! l + }, <"'1
2 

+ "'l) I = 0 

For µ
2 

< 0, A > O the minima occur for <Pi and <i:>2 on the circle 

where, as before : 

2 
a2 - 6µ - - -x-

The ground states are the points <i:>1, <i:>2 which lie on this circle and they 
transform into each other under the group 50(2). We can always choose the 
axis in the <i:>1, <P2 plane in such a way that 

""1 ( +) = a 

is the ground state, which, as before, implies the spontaneous break-down of the 
symmetry. 

The transformation to new fields around this vacuum state is the 
following 

<i>' 1 = <i>1 - a 
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which leads to the lagrangean 

A ( I 2 I 2) I A ( I 2 I 2)2 
- 'l! a <P 1 + tp 2 <P1 - 2f! tp 1 + <P 2 

We see that one of the fields, <P' 1, acquires a positive mass 

m= V2iTi = R 
whereas the field <P' 2 is massless. This massless field is called a Goldstone 
Boson. And this result is an illustration of Goldstone's theorem : there will 
be N-M massless bosons in a theory in which a subiiroup of dimension N-M 
from a synunetry group G of dimension N, is spontaneously broken. 

Consider a n-dimensional real vector field <P the components of 
wh~ch are scalar fields 

(~l) <P = : . 
<Pn 

with lagrangean : 

Let G be the continuous group which leaves the potential energy U(<P} invariant. 
Let Ta be the N generators of this group and wa the infinitesimal parame­
ters so that 

<P --> <P' 
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Ta here is the n x n matrix representation of the generators. By definition, 
under this group : 

o!J=~ otpk 
Cltf'J< 

As the parameters wa are arbitrary, these are N equations 

a=l, ... ,N 

If we differentiate this equation once we obtain 

Let us take this equation at the value 

lP = a 

which minimizes U(ti>) ; as 

we get 
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Now as we expand U(~) around a we have 

1 (a2 u ) 
+ "Z at:>kaq,1 

~=a 

so the second derivative above is justthe squared-mass matrix, which gives us : 

a = 1, ... , N (VII. 9) 

If, after the choice of the ground state, a sub-group g, of dinension n, 
remains a syrmnetry of this state, then for any generator of this sub-group 

a = 1, ••• , n < N 

whereas for the generators of the group (G - g), of N-n dimensions, which 
breaks the synunetry, we have 

a= n + 1, ... , N 

Therefore, the equation (VII. 9) for (M2) k says that there are N-n zero 
. p 

eigenvalues for the squared-mass matrix, the massless bosons. 

This result prevented for some time the consideration of spontaneous 
break-down of symmetries into particle theory since it would imply Goldstone 
Bosons and no evidence was found about massless, spinless bosons. 

In the years 1964-1966, a series of papers 79-s3) appeared which showed 
that the introduction of spontaneous break-downof symmetry for a scalar field 
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in gauge theory leads to the disappearance of the Goldstone Bosons, which 
are gauged away, and the appearance of massive vector fields resulting from 
transformations of the gauge fields. 

VII. 3 - THE HIGGS MECHANISM 

Consider the lagrangean (VII. 7} formuiated in tenns of the complex 
scalar field : 

that is 

~(x) = __ l_ (~1 (x) + i ~2 (x)) ff 

<P*(x) = __ l_ (~1 (x) - i ~2 {x)) ff 

(VII. 7a) 

(we keep this coefficient for the coupling constant instead of ~ because of 
the expression of this interaction in tenns of real fields (see (VII. 7))). 

This lagragean is invariant under the transformation _ 

~(x) -> ~(x) = e ia ~(x) 

corresponding to equations (VII. 8). 

Let us now consider a local S0(2) rotation 

~(x} = eige(x) ~(x) (VII. 10) 

In this case, as we have learned, we have to introduce a gauge vector field 
aµ(x) (see the Chapter II) and the invariant lagrangean under the group 
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(VII. 10) is 

(VII. 11) 

where 

and the transfonnations (VII. 10) are accompanied by the following transfor­
mations of the gauge field : 

(VI I. lOa} 

The new point now, as compared to the precedent study of the electro­
magnetic field (which stops at the last equations, with g = e) is that we 
assume 

2 A > 0 , µ < 0 

so that the minima of the scalar potential energy occur for: 

a2 = _ 6i 2 0 A , µ < 0 , A > 

The break-down of the symmetry above, equations (VII. 10) and (VII. lOa) occurs 
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when we choose one of the possible minima as our ground state, say 

or 

then 

<P = 0 
1 -a 
ff 

<P1(0) = a <P2(0) = 0 

The transformation to new fields referred to this ground state is 

q> 1 (x) = <P(X) - ~ 
./'l 

!_ real 

and the corresponding lagrangean will be : 

1 ( µ I ) ( I ) A ( I 2 I 2) I A ( I 2 I 2)2 + + "2" a <P 2 aµ <P 2 - TI a <P 1 + <P 2 <P 1 - '2IT <P 1 + <P 2 

+ coupling terms between <P and aµ 
(VII. 12) 

where 
2 2 2 m = - 2 µ , µ < 0. 

The new thing is the second term on the right-hand side, namely 

1 2 a2 µa '2" g a µ 

which corresponds to a mass for the field au(x) equal to 
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The gauge transfonnations for the new fields are now 

;);• + ,,;__ = eige(x) l <P'(x) + ,,;__ l 
so that 

;);'1 cos g e (x) l <P' 1 + ,,;__ l -sing g e (x) <1>' 2 - ;-

;);'2 cos g 9 (x) <1>' 2 + sin g e (x) \ <1>' 1 + ,,;__ l 
~(x) = aµ(x) - aµ e(x) 

We note, however, that the lagrangean (VII. 12) has a spurious field 
indeed the number of independent field components in the first lagrangean 
(VII. 11) is four : two components for the massless vector field, plus <t>

1 
and 

~2 whereas (VII. 12) has 5 components : <t>'i, <t>' 2 and the three components 
of the massive vector field. Indeed we can transfonn the Goldstone boson field 
<t>' 2 away. For this we introduce new variables, namely: 

<P(x) = ~ l p(x) + a l eigw(x)/a 
(VII. 13) 

The new fields are p(x), w(x) and C 
µ 

and the value ! of <t> which renders 

the potential energy minimum is essential for this transformation a ; O. 

We obtain : 

= _l_la p+ igC (p+a)\ eigw/a 
ff µ µ 
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and then the lagrangean (VII. 11) goes over into : 

A 
- 4T (VII. 14) 

In this lagrangean there are the massive vector field Cµ with 
mass 

and the massive scalar field p with mass 

The Goldstone Boson, which in the new variables would be described 
by the field w(x), disappeared. Instead, its corresponding degree of freedom 
contributed to the additional degree of freedom acquired by the massive vector 
field C • 

µ 

Th . . . h . 79-83) 1s 1s the Higgs mec an1sm · 
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PROBLEMS 

VII - 1. Tfle lagrangean 

L 1 (•)2 1 2 2 A 4 =-zm x -~ mw x -ll'x 

describes a linear hannonic oscillator submitted to an x3 attractive force 
if A> O and if w is a real number, the mass m being positive. 
a) What are the values of x which give a minimum to the potential energy 
if m > 0, A > 0, w2 < O ? 
b) Break the synunetry by choosing one of these values to define a new coordina­
te x' which vanishes at the minimum potential energy ; and show that in the 
new variable the lagrangean defines an oscillator with a real frequency and 
forces proportional to x'2 and to x• 3. 

VII - 2. a) Deduce the complete lagrangean {VII. 12) ; b) with the variables 
defined by equations {VII. 13) obtain the lagrangean (VII. 14). 

VII - 3. Read Coleman, ref. 24 ; Rajaraman, ref. 25 ; O'Raifeartaigh, ref. 109. 



CHAPTER VIII 

The Salam-Weinberg Model 

GFT - 0 
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VIII. 1 - UNIFICATION OF THE ELECTROMAGNETIC AND WEAK INTERACTION THEORIES 
THE SALAM-WEINBERG MODEL 

The aim of physics is the description of large classes of phenomena, 
based on a few simple ideas and postulates. Physical theories give rise 
to intuitive representations and images which contribute to an understanding of 
the corresponding class of phenomena. 

A higher level of understanding is reached in physics whenever two 
different theories are unified, two apparently unrelated classes of facts are 
discovered to be intimately connected, fanning two subclasses of a larger set 
of phenomena described by a larger, unitary theory. 

In the history of physics, some notable unification efforts were 
achieved. They are indicated in the table VIII. 1 
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TABLE VIII. 1 - Unification of physical theories 

Newton, 1686 : he stated that the gravity force which the Earth exerts 
upon all terrestrial bodies is identical to the gravitational force bet­
ween any two bodies anywhere in the universe The physics of gravity on 
Earth is a chapter of the Newtonian theory of universal gravitation. 

Maxwell, 1855 : the laws of electricity and magnetism as expressed by 
Maxwell's equations imply that the electric and magnetic fields have the 
same physical nature, transform among themselves and are components of 
a single physical entity, the electromagnetic field. Light waves are 
electromagnetic waves ; optics is a chapter of electrodynamics. 

Einstein, Lorentz, Poincare, 1905 special relativity, as discovered by 
these authors and developed mainly by Einstein, is based upon the fact 
that time and ordinary three-dimensional coordinate space are sub-spaces 
of a four-dimensional Minkowski space. Physical variables have a definite 
transformation law under the proper orthochronous Poincare group and 
these laws acomplish the unification of quantities such as momentum and 
energy, electric field and magnetic field, charge density and current 
density and so on. Matter and energy are equivalent. 

Einstein, 1915 : in his theory of general relativity, the gravitational 
field is described by the fundamental metric tensor of a four-dimensional 
Riemann space. The geometry of this space is determined by an equation 
which involves the energy-momentum tensor of the universe. Gravitational 

dynamics is unified with geometry. 

De Broalie, 1924 : the duality wave-particle holds not only for light but 
also for all particles. Mechanics became wave mechanics which evolved 
into the quantum mechanics of Schrodinger ; Born, Heisenberg and 
Jordan ; and Dirac. 
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After the discovery of the vectorial form of the weak currents 
and of the possible description of weak interactions by means of a field of 
intennediate vector bosons, the idea arose among physicists of a possible 
unified descriptio~ of electromagnetic and weak forces. This idea was based 
on certain basic conunon features of these forces namely, a} representation of 
both types of forces by vector fields ; b) a universal coupling constant, ~ 
for the electromagnetic interactions and g for the weak interactions, rela­
ted among themselves by the Fermi constant and equation (VI. 13). From the 
latter equation, however, it follows that if the coupling constant e of 
charged currents with the electromagnetic field A is assumed to be the 
same84 ) as the coupling constant g of the weak c~rrents with the weak vector 
boson field Wµ, then the mass of the vector bosons must be much larger than the 
proton mass, of the order of 40 GeV. Thus if the electromagnetic vector field 
Aµ and the weak vector boson field Wµ were to belong to some multiplet, 
having each the same coupling constant with the corresponding current, it is 
unsatisfactory that there exists such a mass difference between these fields, 
the electromagnetic field being massless. 

The assumption that the electromagnetic field were described by a 
gauge field as seen in Chapter II and the intermediate vector boson field 
by some gauge field of the Yang-Mills type would not be acceptable since the 
latter has to be massless if the lagrangean of the theory is invariant under 
the SU(2) gauge group. 

The discovery of the Higgs mechanism was the key which made it 
finally possible the formulation of unified models of weak and electromagnetic 
interactions based on the theory of gauge fields : after a lagrangean is cons­
tructed with massless fermi and vector boson fields so as to be invariant under 
a gauge group G, a spontaneous breakdown of the symmetry correspondtng to a 
sub-group g of G is introduced which generates masses for fennions and bosons 
with the exception of the photon and neutrinos. The Higgs mechanism accomplishes 
this task without introducing Goldstone bosons. The final physical lagrangean is 
still invariant under the U(l) gauge sub-group associated to the massless 
electromagnetic field. 

A model proposed by Georgi and Glashow postulated three vector gauge 
fields associated to the three generators of the S0(3) group ; the theory 
was arranged so as to identify the neutral field with the electromagnetic field 
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and the two other fields with the intennediate vector boson fields after mass 
generation by the Higgs mechanism. This model was abandoned since experimentally 
it was found that besides the two charged boson fields, W , W + and the µ µ 
electromagnetic field A , there most likely exists a fourth massive boson 

µ 
neutral field Z , which mediates weak interactions between neutral weak currents; 

µ 143 the latter have been observed in laboratory {Musset et al. ). 

The simplest, or most economical, unification model of the weak and 
electromagnetic forces is the model which was fndependently developed by 
Weinberg and Salam. Experimental research in the last decade has confinned so 
far some of the predictions of this model. The model assumes the SU(2) ~ U(l) 
group as the fundamental gauge group. This is because in correspondence to 

the four generators of this group, T1, T2, T3 for SU(2), the identify I for 

U{l), four vector fields are introduced au {x), a= 1, 2, 3 and B {x) a µ 

in connection with the definition of the covariant derivatives needed for the 
construction of an invariant lagrangean. From these four fields the electroma­
gnetic field A , the charged boson fields W and W + and the neutral 

µ µ µ 

boson field Z are derived. The simplest basic matter field is the leptonic 
f

. µ 
leld formed of an electron and its associated neutrino. They are assumed to 

be massless together with the above gauge fields in the invariant lagrangean. 
The mass of the physical particles (electron, charged and neutral bosons 
W, w+, Z) is generated by the Higgs mechanism ; therefore a doublet of scalar 
Higgs fields with mass and quartic self-interaction is introduced in a gauge­
invariant way in the lagrangean so as to form an invariant with the matter fields. 
And the vacuum expectation value of the Higgs field is chosen in such a way 
as to give a mass-term for the electron field e(x), proportional to e(x) e(x}, 
and no mass term for the neutrino. As the gauge fields enter the covariant 
derivatives of the Higgs field, it will turn out that a convenient linear 
combination of the first two components of the vector field oua will display 
a mass term. This will then correspond to the physical field Wµ. A similar 
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phenomenon occurs for one of two possible orthogonal linear combinations of 

a µ 3 and B ; it wi 11 correspond to the massive neutral boson field Z . The 
µ • µ µ 

remaining, massless, linear combination of a 3, Bµ is the electromagnetic 
field. At the same time, the interactions of these fields turn out to be the 
known electromagnetic and charged weak interactions. A new term, corresponding 
to an interaction between a neutral weak lepton current and the neutral vector 
boson field appears in the lagragean. This prediction has been verified ex­
perimentally143>and a parameter, the Weinberg allJle, which defines the electro­

magnetic and Z-fields in terms of the initial gauge fields has been experimen­
tally measured. At the time of writing, however, (November 1980) no experimen­
tal observation has been made of the vector-bosons W, w+ and Z, nor of the 
scalar Higgs bosons. 

The unification accomplished by the Salam-Weinberg model is therefore 
expressed in the fact that the electromagnetic field and the vector boson 
field are special linear combinations of the components of the vector gauge 
fields aµ a and Bµ ; they a re thus of the same nature and come out so to 

say from the same underlying field. The duality still remaining in tnis theory 
resides in the occurrence of two coupling constants g, g' in terms of 
which the charge e and the Weinberg angle are expressed. 

VIII. 2 - THE SU(2) ~ U(l) GAUGE INVARIANT LAGRANGEAN 

We shall now develop the main ideas of the Salam-Weinberg theory of 
unified weak and electromagnetic interactions80-BS, 94-l08). 

Let us consider the simples case of the interactions among electrons 
and electronic neutrinos. As the neutrino is known to be completely polarized 
and left-handed the simplest way of comoining a neutrino and an electron 
into an isospin multiplet is to consider a left-handed doublet : 
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L(x) 
(

"L (x)) 
el(x) 

{VIII. 1) 

where 

However, the electron is massive, therefore there must exist a right-handed 
component of the electron field operator which we sall assume to be an isospin 
singlet {invariant under the SU{2} group) 

{VIII. la) 

So the basic matter field is represented in table VIII. 2 

Basic matter fields 
in the simplest S-W Theory 

Isospin Isospin 
doublet singlet 

L(x) = R(x) = 
= cl(x)) 

el (x) 
= eR(x) 

Table VIII. 2 
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However, invariance under the SU(2) group requires that these fields have the 
same mass. Thus, in a first stage, we assume that the fields (VIII. 1) and 
(VIII. la) are ma!sless. 

A lagrangean,invariant under the SU(2) group, associated with these 
fields is 

which describes free massless neutrinos and electrons 

i ya a v(x) = 0 
a 

; ya a e(x) = O 
a 

We want to be able to use the Higgs mechanism to generate the electron 
mass and for this purpose introduce scalar fields. Thus if we can have, instead 
of the above equation for the electron, an equation of the form 

! i ya a a - g <P( x) l e ( x) = 0 (VIII. lb) 

then a change of scalar field variable around its ground state or vacuum expec­
tation value a : 

q) I ( X ) ; <i>( X ) - a (VIII. le) 

would give the following equation 

(VIII.Id) 

with 

m = g a 
(VIII. le) 



- 249 -

indicating a generation of the electron mass by the vacuum expectation a of 
lP{X). 

In order to get such a mechanism, we look then for a possible interac­
tion of the fields L{x) and R(x) with scalar fields. This interaction must 
be invariant under the SU(2) group therefore we need an isodoublet of 
scalar fields : 

(
4>1 (x)) 

cp(x) = 
. 4>11 (x) 

(VIII. 2) 

so that the fol lowing lagrangean is possible 

~= [ i ya a L + + R i ya a R - G (L ct> R + R ~+ L) + 
a a 

(VII I. 3) 

The last three terms correspond to a self-interacting ct>-field and the terms in 
the coupling constant G define the interaction between ct> and L and R. 

This lagrangean is invariant under the global group SU(2) : 
-+ 

.... T 
i A• '2" 

L --i> L' = e L 
-+ 

.... T 
i A• "2" 

<t> ----..;> cf>' = e cf> 

R --> R' = R 

but it is also invariant under the global U(l) group 
; 

L 
"' -20 

L --:> L = e 

i a 
<P --!> ~ = 

'Z 
If> e 

"' -ie R ---·~ R = e R 

(VIII. 4) 

(VIII. 5) 
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Now the above transformations for constant phases are represented by 
transformations in Hilbert space, of the type 

-iA·T 
n• = e n e n = L, <fl, R 

for the group SU(2) {VIII. 4) and of the type 

n• = e 

• y 
-1 e "2' 

n e 

for the U(l) group {VIII. 5). 

·a v 
l "2' 

+ 

(VII I. 4a) 

(VII I. Sa) 

So that the operators T (isospin) and Y (hypercharge) in Hilbert 
space satisfy the corrrnutation rules 

[r, L] =-~ L 

(T, ~ ] = - ~ 4' 

[T, R 1 = 0 

[v, L ] = L 

(v' <I> ) = - 4> 

(v, R ] = 2R 

{'II II. 4b) 

Therefore the following are the eigenvalues of the isospin 1
3 

and hypercharge 
Y for these fieds (table VIII. 3) : 



T3 

\)1 l/2 

\ -1/2 

eR 0 

cp I 1/2 

<Pn -1/2 

y 

-1 

-1 

-2 

1 

1 

Q 

0 

-1 

-1 

1 

0 

- 2Sl -

Table VIII. 3 

Isospin, hypercharge and 
charge of the matter and 
Higgs fields 

where the charge is given by 

(VII I. Sb) 

Now in order that an invariant lagrangean under the local SU(2) ~ U(!) 
group be constructed we introduce the vector gauge fields aµa(x), a= 1,2,3 

and Bµ(x) corresponding to the transformations (we take g > 0, g' < 0) : 

-+ I 
L --> LI =exp~ i(g A(x)• ~ + t e(x)) t L 

-+ I 
¢> --> ¢>I = e·xp t i ( g A ( x) • ~ - ! a ( x)) t <P (VII I. Sc) 

R --> R' = exp ~ i g' a (x) t R 

The covariant derivatives applied to the matter and Higgs fields 
wi 11 be 

T I 

Dµ L (x) = (aµ + i g aµa (x) ~ + i 'Bµ(x)) L(x) 

Dµ ~ (x) = (aµ+ ; g aµa (x)-:..; - i 11

Bµ(x)) ~(x) (VII I. 6) 
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D R(x) =(a + i g 1 B11(x)) R {x) 
µ lJ '"" 

according to the rules developed in Cnapters II and IV. 

The field tensors of the vector fields a ua 

as seen in sections IV. 4 and II. 2 respectively. 

The total lagrangean can now be written 

and B 
lJ 

Y = _ .i ~ µv <§_ a - .;_ B µv B + [ i yo. D L + 
<+ a µv, <+ µv o. 

are then 

(VIII. 7) 

(VII I. 8) 

with the derivatives as defined in (VIII. 6). It is gauge invariant, that is, 
invariant under the local SU(2) ~ U(l) group (VIII. Sc) ( the coefficient of 
the term in(~+ ~) 2 is the one we used in formula (VII. 7a), section VII. 3). 

VI I I. 3 - GENERATION OF THE ELECTRON MASS 

As suggested in (VIII. lb), (VIII. le) we now want to break the gauge 
symmetry by assuming 

and shifting the scalar field in a convenient way around a chosen ground state. 
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Let us consider the tenns in G in (VIII. 8) : 

G{[ $ R + R $+ l) = G ! (\il eR) $1 +{OR vl) ¢1+ + {i!l eR) $II+ {OR el) $1/l 

As the tenns in (el eR) and (eR el) contain the field ~II' ~+II as factors 

respectively, we need to shift only the field ~II around the chosen value 

which gives the spontaneous synnnetry breakdown. 

We choose to shift the field ~II around its vacuum expectation value 
a : 

(VIII. 9) 

The tenns in G become, with this choice 

G {L ~ R + R ~+ L = 

Therefore if we group these tenns together with the kinematic tenns in L and R 
in the lagrangean {VIII. 8) we obtain : 

1 - i - s I + --- (ee) x1 + --- (e y e) x2 12 12 

(VII I. 10) 



where 

m = 1- a G 
e ./'l 
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(VIII. 11) 

is precisely the electron mass which is thus generated by the vacuum expectation 
value of the field ¢11 (x). 

Now, the lagrangean (VIII. 8) is gauge invariant, that is, it is 
invariant under the transformations (VIII. 4), (VIII. 5) and the transformations 
of the vector fields 

(VIII. 12) 

As the field ¢(x), given by the doublet (VIII. 2) is equivalent to 
four real fields we can express it in the following way 

(VII I. 13) 

and four real fields are now the three Aa's and ~1 . 

The gauge invariance makes ~ independent of A and therefore the a 
above choice is a transformation away of the three fields Aa so we can 
choose for the scalar doublet : 

¢(x) (VIII. 13a) 

More precisely, we may fix a SU(2) gauge of a given field ~(x) such that for the 

transformed field ~·(x) one has ~· 1 (x) = O, Im ~'u(x) = O. 
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The tenns {VIII. 10) are thus : 

[ i ya a L + R i ya a R - G (L ~ R + R ~+ L) a a 

{VIII. 14) 

where me is given by (VIII. 11). 

The Higgs field has thus generated_>be· ~lectron mass and given rise to 
a scalar field interaction with the electrons, as expressed in the tenn in x

1
. 

VIII. 4 - THE MASS OF THE PHYSICAL HIGGS FIELD 

Let us now consider the tenns in M2 and A in the lagrangean 
(VIII. 8). The value of ~ corresponding to a minimum of the potential 
energy of the self~interacting scalar field is 

2 - 6 M2 
a = (VIII. 15) 

:\ 
\ 

and this value transfonns away the tenns linear in x1 obtained by replacing 
~(x) by (VIII. 13a) in the terms in M2 and A of (VIII. 8). 

The resulting tenn in x2
1 will be 

( 
1 2 6A 2) 2 2 2 - '2' M - TI a x1 = M X1 
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As M2 is negative we see that the field x1 has a positive mass 

(VIII. 16) 

a free parameter of the theory. 

VI I I. 5 - THE MASSIVE VECTOR BOSONS 

Therefore the last six terms in (VIII. 8) are (apart from the 
interaction of L and R with the gauge fields) : 

(VIII. 17) 

where the terms in Wµ and Zµ came from the expression : 

with the definition of the fields : 

(VIII. 18) 
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To see the significance of the latter fields we consider the first two tenns 
in (VIII. 8) 

which may be written : 

1 ~µv ~ 1 µv 
- l a µv,a - 4 8 8µv = 

11 ·1 Q:?µv . (£/µv 1 (£/ a? 
= - lJ l'l. ( Y 1 + 1 Y 2) l'l. ( Y µv, 1 - i Y µv, 2) + 

(VII I. 19) 
1 O.? µv (£? µv 1 a? CL? t 

+ ./'l ( Y 1 - i Y 2) IZ ( Y µv, 1 + i Y µv, 2 )~ -

In view of the definitions (VIII. 18) and (VIII. 7) we have : 

where 

Therefore : 

1 a::::' µv a::::' 1 Bµv B -
- '2f ;!:;; a ;!:;; µv,a - '2f µv -

(VIII. 20) 

GFT. R 
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Now : 

1 ~µv CL:2 1 µv 
- 1 3 ~µv,3 - '2f B 8µv = 

1-e we define : 

(VIII. 20a) 

we see, from the definition of zll and wll in (VIII. 18) that 
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where 

Also 

Therefore 

1 Q:?lJV ~ - 1 Bµv e = 
- 1 y 3 J.1V ,3 ~ lJV 

(VIII. 21) 

We see that if 

e: = (VIII. 22) 

The first term on the second hand side is 

- .! Fµv F - 1 zµv z 
4 µv 4 µv 

(VIII. 24) 
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Let us collect the terms in (VIII. 17), (VIII. 20), (VIII. 21), (VIII. 22) 

G (- ). a 3 ). 4 _ wµv+ w 
- IZ ee)x1 - """"'3'T X1 - CIT X1 µv + 

1 2 .2 I 1 2 i µ 
+ 4 ( g + g ) "'2" x 1 + a X 1 ~ Z ~µ -

+ i g ( 9 zll"- 9 • Fll")(w + w - w + w ) + 
2(g2 + g'2)1/2 µ " " µ 

(VII I. 23) 

By inspection of these terms we see that the field Wµ has a mass 
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The field zU has a mass : 

Thus the Higgs mechanism has also generated masses for the W and Z bosons. 
The field Au is massless and we would like to identify it with the electroma­
gnetic field. 

VIII. 6 - THE ELECTROMAGNETIC FIELD AND THE WEINBERG ANGLE 

F?r this purpose we must examine the tenns of the lagrangean (VIII. 8) 
which remain, that is the interaction between L, R and the gauge fields. We 
have : 

IC) -
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So : 

[ i yµ D L + R i.yµ D R = 
µ µ 

= e (i ya aa)e + ;;L(i ya aa)"L - ~le yµ(l-iJv l Wµ • 

-~ j;; yµ(l-·he ~ wµ + - { );; Yµ(l-y
5

Jvl ! g aµ 3 + g' Bµ l + (VIII. 25) 

+{ (i Yµ e)l gaµ 3 - 3 g' Bµ~ • 

-{ ce Yµ y
5 

e) l g "'µ 3 + g' Bµ I 
Now we have the identity : 

But we saw that (see (VIII. 18), (VIII. 22) and (VIII. 20a)) 

(VII I. 26) 

Aµ 1 ( I µ Bµ) 
= 2 2 1/2 - 9 ° 3 + 9 

(g + g' ) 

therefore 
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which gives (VIII. 25) the fonn : 

[ i yµ D L + R i yµ D R = µ µ 

= ;; ; Ya aa e + ;;L ; Ya aa vl - z3z ! ;; yµ(l-y5)v ! llµ -

Let us now introduce the Weinberg angle ew : 

cos 0w = (g2+
9
9

,2)172 

tg ew = f 

. g' 
sin ew = 2 2 1/2 

(g + g' ) 

(VIII. 27) 

(VIII. 28) 

which defines a rotation in the plane aµ3, Bµ to get the fields Aµ and 
zµ : 

(VIII. 29) 
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From the interaction tenn of the current (e yll e) with the field Aµ we 
conclude that this is the electromagnetic field if the charge e is given by 

(VIII. 30) 

The Weinberg angle is a parameter to be detennined experimentally. 

VIII. 7 - THE EFFECTIVE SALAM-WEINBERG LAGRANGEAN FOR ELECTRONS AND NEUTRINOS 

If we collect the tenns of the lagrangean (VIII. 8) which have been 
developed in (VIII. 23), (VIII. 27)we get: 

(VII I. 31) 

where 

is the free lepton lagrangean with m = !.... G ; 
e ./'l. 

£ = - 1 wll"+ w + m. .2 wu+ w 
W '2" µv w µ (VIII. 3la) 

is the lagrangean of the free intennediate charged vector boson field with mass : 

(VIII. 3lb) 

is the lagrangean of the free electromagnetic field ; 

~ = _ 1 zUV z + 1 m 2 zU z 
Z if µv '2' Z µ 

(VIII. 31c) 
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is the lagrangean of the free intennediate neutral vector boson field with mass 

is the lagrangean of the free neutral Higgs scalar field with mass 

a free parameter in the model 

and 

ri < o 

~nt = 2'-Cx, x) + Y(x, e) + Y(x, W) + 

+ .21x, Z) + 2'-(w, A, Z) + $w, W) + 

+2(e, v, W) +Yee, A) + $e, v, Z) 

is the interaction lagrangean with the following pieces 

{VIII. 3ld) 

(VIII. 32) 

(VIII. 32a) 
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is the self-interacting tenn of Higgs field 

r// G -.,:z; (x, e) = - ~ (e e) x 
. /'!. 

is the interaction between electrons and the Higgs field 

is the interaction between Higgs and W mesons 

js the interaction between Higgs and Z mesons ; 

Sfcw, A, Z) = cos ew ) ( g z"- 9' Au) i (w"" 11\- 1-1uv+ w") + 

+ 1 (g zµv - g' Fµ") i (W + W - W + W ) -
"Z µ " " µ 

• ( g gµ" - c5 " 0 µ) ~ aa a f3 ~ 

(VIII. 32b) 

(VII I. 32c) 

(VII I. 32d) 

(VIII. 32e) 

is the interaction between W bosons and the electromagnetic and Z fields 
(note that the electromagnetic coupling constant is g' cos aw= e) ; 
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(VIII. 32f) 

is the self-interaction of the W-bosons 

(VIII. 32g) 

is the weak interaction of the charged weak current with W bosons, from 
which one derives 

2 

~= 
w 

~F 
--; 

./'l 

~(e, A) ; - e j Aµ 
µ 

. (y) -
Jµ = e Yµ e 

e = 

is the electromagnetic interaction of electrons ; and 
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-j{ (92+ g'2)1/2 (e yµ ys e) + (VII I. 32h) 

3 g•2_ 92 (e yµ e) l z 
+ 4(92+ g'2)1/2 ~ µ 

is the interaction of neutrinos and electrons with the Z bosons which may be 

written : 

(VIII. 32i) 

where the neutral lepton current is 

µ .µ 2 · 2 e Jµ 
j (o) = J 3 + sin W {Y) 

We started with four massless vector gauge fields aµ' Bµ needed 
for the construction of a lagrangean invariant under the SU(2) ~ U(l) gauge 
group. The initial matter fields, L, R, are also massless for this invariance 
to hold. 

A scalar massive field is introduced the mass of which is an arbitra­
ry parameter 

needed for the generation, by spontaneous symmetry break-down, of the mass of 
the electron. As a result, four vector fields are defined as a function of the 



- 269 -

initial massless gauge vector fields and of these new vector fields, three, 
W, w+, Z, have acquired a mass, 11\l' mz, the fourth vector field being 
massless, the electromagnetic field Aµ; the theory remains invariant under the 
U(l) electromagnetic gauge group. 

The theory thus describes in a unified fashion the electromagnetic and 
the weak interactions. It predicts the existence, not only of charged massive 
vector bosons but also of neutral massive vector bosons. Morever, the charge is 
intimately related to the weak coupling constant g and as a result the mass of 
the vector bosons is much higher than the proton mass (results which had been 
previously predicted in a speculative and intuitive basis, as well as the non­
charge-independent nature of the interaction with charged and neutral vector 
bosons (~ee refs. 84-90) ). 

VIII. 8 - PARAMETERS AND PHYSICAL CONSTANTS IN THE SALAM-WEINBERG LEPTON MODEL 

let us collect the parameters and physical constants which appeared 
in the above derivation of the lagrangean (VIII. 31). They are : 

me 
a G 
./'l 

mw 
1 

=2 a g 
mw 

mz = cos aw (VIII. 33} 

92 ~ g g' 
2 --, e = cl+ g'2}1/2 8 m \~ ./'l 

sin aw = g' cos aw = g 
(gz + 9,2>172 ' (92 + g'2}1/2 
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The single parameter of the theory is the Weinberg mixing angle, 
sin2 aw, say. From the relation between e, g, g' and the definition of 

sin ew we get : 

e = g sin aw 

So if we determine sin aw from experiment we obtain the value of g. 

From the relation between "1w and ~ we get the mass of the 
charged bosons : 

(2)1/4 g 

2~ F 

(2)1/4 e 

2~ sin aw 

and also the mass of the neutral bosons 

mz = 
(2)1/4(92 + g'2)1/2 

2V2~ 
From 

we get (if we compare with the value of "1w above) 

2 12 
a = -2-..,~"'""F=---

for the vacuum expectation value a of the scalar field. Thus as 

<§'__ "' -5 -2 F = 10 mp mp = proton mass 

we obtain for the coupling constant G of the Higgs field-electrons interaction 
2 

2 2 me m 2 
G = --r- ~ 2 ./'l x 10-5 ( ~ ) ~ 10-12 

a mp 
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which is therefore quite small and negligible as compared to electromagnetic and 
neutral-boson interactions (it will be about 4 x 104 larger for the case of 
muons ; 107 larger for tau leptons). 

We also have for ll1w : 

mw2 = ./'l e2 
8 -~~s-in ..... 2_e_w 

F 

and for mz. : 

2 (75 GeV) 2 
mz = -

(sin 2 et/~ 

For 

. 2 
8 

1 
srn W =if 

we get 

l11w ~ 75 GeV 

l1lz ~ 90 GeV 

(37.5 GeV) 2 

sin2 ew 

Experimentally, no evidence has yet been found (as of November 1980) of 
th W and Z bosons directly but for esthetical reasons it is believed that 
they do exist. Otherwise ..• (Remember that pions as well as anti-protons took 
some time to be detected). 

VIII. 9 - THE NEUTRAL LEPTON CURRENTS 

Besides justifying the weak V-A charged-current interactions via 
the W bosons, the Salam-Weinberg model predicts weak neutral-current interac­
tions via the neutral boson Z field. The respective lagrangean interactions 
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are : 

~!e,v,W) = -~ l<• yµ(l-y5)v)Wµ+(V yµ(l-, 5)e)Wµ+ I 
for the charged current interaction with the W bosons ; 

(// 1 2 2 1/2~ 1 - µ 5 1 - µ 5 .;z;, (e,v,Z) = - '2' (g + g' ) l -z (vy (1-y )v)- '2'(e y (1-y )e) + 

(VI II. 34) 

+ 2 sin2 ew(O yµe)lzµ 

for the neutral current interaction with the Z bosons. 

The latter can be written : 

(VIII. 34a) 

where 

(VIII. 34b) 

is the neutrino neutral current which is of the V-A fonn ; and 

.µ ( ) d - µ 5 l J (o) e = '2'~ e Y (gv - gA Y ) e (VIII. 34c) 

where 

9y = - 1 + 4 sin2 ew 

(VI II. 34d) 
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is the neutral electron current which is therefore not of the V-A fonn. If 
we set : 

jµ(o)(e) has indeed rather a predominant axial nature. 

Experimentally the Weinberg angle has been detennined 

sin2 ow = 0.23 ± 0.02 
145) 

(Baltay, 1978) 

VIII. 10 - EXTENSION OF THE MODEL TO THE OTHER LEPTONS 

We can easily generalise the theory to the case of the other leptons 
such as 

We only have to consider the left-handed isospinors 

and the right-handed isoscalars : 

where we sometimes use the notation 

GFT-S 

v' = v µ 
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In the lagrangean (VIII. 8) the only change is now 

[ i ya a L + R i ya a R - G (L '1> R + R <P+ L) -> 
a a 

-:> 

where the sum is over 1 = e, µ, T, ..• 

The masses of the leptons will be determined by the constants G1 

m = ~ G 
e ./1l. e 

m :...!. Gµ 
µ ./'l. 

m =..!.. GT 
T .fl. 

The interactions will then be a sum of the interactions of each 
lepton field with the boson fields (see also paragraph VIII. 12). 

VIII. 11 - NEUTRINO-LEPTON SCATTERING AND THE EXPERIMENTAL TESTS OF THE SALAM­
WEINBERG MODEL 

The interaction of leptons with the W and Z fields is given by 

(VIII. 34) where we sum over all leptons £, v1. 

The best experimental tests of the Salam-Weinberg theory are 
provided by the scattering of neutrinos on electrons. The table below gives 
the diagrams for the different possible types of this scattering 
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Table VIII. 4 

First order diagrams 
Reactions charged current neutral current 

interaction interaction 
I 

)---<> I 
vµ + e ~ ve + µ 

I no 
W e 

I µ 
I . 
I 

~ I 
- -

I v +e-->v + µ no e µ 

~ I 
I Ve 
I 

I 

:r.< I 
vµ + e ----.> v + e no I µ 

r 
I µ 

I 

I 

::>~ \i+e-->v +e no I µ µ 

r 
I 

)-w-<e 
I x "e + e --> "e + e + 
) 

I e .. 
I 

¥ve I 

~~z< v + e --> v + e + e e 

A I 
"e e I 
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The reactions {as we see from the table VIII. 4) 

v +e --->v +e µ µ 
(VII I. 35) 

and 

"µ + e --> "µ + e (VIII. 35a) 

provide the good test for the detection of neutral-current interaction 123-130). 

From the lagrangean ~(leptons, Z} we deduce that the amplitude 
for (VIII. 35) is (see (VIII. 34a)) : 

where 

k = p I { e) - p { e) = p ("I ) - p I (v I ) µ µ µ µ µ 

The contribution of the second term in the propagator vanishes since 

as 

So in the approximation 

k2 « m 2 z 

Ya p v' = 0 a p 



we get 

M = 

with 
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92 - µ 5 - 5 
2 2 (v' y (1-y )v')(e Yµ (gv - gA y )e) 

16 m z cos aw 

gv = - 1 + 4 sin2 aw 

gA = - 1 

But by (VIII. 33) we know that 

so that the angle disappears from the coupling constant factor : 

16 m2 cos2 e z w 

Thus 

The differential cross-section can be calculated for the reaction : 

v + e -----> v + e µ µ 

and has the fonn : 

da ~
2 

F me Ev l 2 2 2 \ 
- ( gV + gA) + ( l-y) ( 9y - g A) ~ ry-~ 4 l 

(VIII. 35) 

(VIII. 36) 
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where a small tenn, has been neglected and 

9y = - 1 + 4 sin2 ew (VIII. 37) 

Ee is the energy of the electron in the final state, Ev is the incident 
neutrino energy in the laboratory. The parameter to be detennined is therefore 
sin2 ew. To see intuitively the origin of the two tenns in (VIII. 36) we shall 
write the electron neutral current under the following fonn 

- 5 
e Yµ (gv - gA y )e = 

(VII I. 38) 

If we replace this in (VIII. 35) it is seen that the amplitude will be the 
sum of two terms 

M(v' + e + v' + e) = MLL + MLR (VII I. 39) 

where 

WF 5 - 9v + gA 5 
= -- (v' yµ(l-y )v' )(e y (1-y )e) 

212" µ 2 

(VIII. 39a) 

expresses the interaction between the left-handed neutrino and a left-handed 
component of the electron field ; 
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(VIII. 39b) 

comes from the interaction of the incoming left-handed neutrino with the right­
handed component of the electron field. 

If the neutrino initial momentum is taken as the z-axis we have in 
the center-of-mass system in the initial state 

" e Figure VIII. 1 

and as the neutrino is left-handed we have for a left-handed electron (VIII. 39) 

initial state 

" Figure VIII. 2 

so the projection over the z-axis of the angular momentum vanishes 

J = 0 z 

and the same is true for the final state for e = O and for e = ~ 

• I > < I .. for 0 = O ; Jz = 0 el " 
final state 

I > ¢:::i .. for e = 1T ; Jz = o 
\I el 

Figure VII I. 3 
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where e is the angle in the center-of-mass system 

/ 
e 

Figure VIII. 4 

We expect the cross-section to be independent of e and 

doll G 2 s 
"'CfY "' F s >> m 2 

e 

for the left-handed electron (similar to reaction VI. 17). 

For the right-handed electron however the situation is as follows 

initial state <=-i • < I Jz = - 1 v eR 

, <==' <=1 J e = o J = - 1 z eR v 
final state 

• I : » .. e = 1T Jz = + 1 
v eR 

Figure VII I. 5 

The state for JZ = + 1 is forbidden ; so we expect that the cross-section be 
of the form (see (VI. 19)) : 
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We now take into account the coefficients in 9y' gA' as well as the kinematics 
of the reaction, namely : 

p• 
e 

p = e 

p• 
e 

which leads to 

(Ee' Pe) 

"' (~e' p) 

'\, "' (Ee, p') 

in the 1 aboratory 
system ; 

in the center of mass 
system. 

"'2 "' "' P a P' = m E = E - o · j)• "' E 2 (1 - cos e} e e,a e e e · e 

in the approximation : 

p2» m2 
v e 

Then as 

s = (Pe+ p }2 
v c.m 

we get 
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but also : 

So that 
1 - cos e Ee 

2 ~ 

hence 
1 + cos e Ee 

=1-r=l-y 
2 " 

The origin of the terms in ,(VIII. 36) is thus intuitively described. 

For the reaction with anti-neutrinos 

v+e+v+e 
1J 1J 

it is seen that the arguments above lead to an exchange of the factors 
gv + gA and gv - gA in equation (VIII. 36) since the anti-neutrinos 
are right-handed. 

Having in mind the values of gv and gA in (VIII. 37) we thus 
have : 
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where 

Ev is the energy of the incident neutrinos, Ee the energy of the 

outgoing electrons. The above cross-sections allow the determination of sin ew. 

VII I. 12 - THE SALAM-WEI NB ERG MODEL FOR HADRONS : THE GIM MECHANISM ; 

THE QUARK MASSES 

In order to extend the Weinberg-Salam model to hadronic matter, we 
have to consider the quark model so as to be able to describe the weak and 
electromagnetic. interactions of quarks. 

As stated in the introduction, there is evidence for the existence of 
a fifth quark ~ , and theoretical prejudice would like it to be accompanied 
by another quark, called t. 

We shall, however, consider the Glashow-Illiopoulos-Maiani model 83 ) 
with four quarks, u,d,c,s, which are supposed to exist in three colour states. 

All observed hadrons are colour singlets and weak and electromagnetic 
currents act on flavour space only. 

We postulate a lepton - quark symmetry according to which to each lepton 
there corresponds a quark, in almost a one-to-one correspondence. 

Let us consider the two left-handed lepton isospinors : 

Let us then associate the quark u to ve and vµ to c 
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Then we could have either the remaining correspondence 

e -> d 

µ -> s 

or the reverse 

e ~> s 

µ -> d 

From the point of view of charge, d and s have the same charge - j, so we 
could take a linear combination for the quark which corresponds to e and the 
orthogonal one corresponding to µ. We thus write 

e 

µ 

ec turns out to be the Cabbibo angle. 

So we start by assuming the following operators* 

as isodoublets and 

as isosinglets. 

* If a third family of quarks, (~), is considered, in correspondence to the lep­

tons (~T) then, instead of Q 1 , Q2 , one wil 1 postulate Q 1 = (~, )L , Q2 = ( ~ • )L 

and Q3 = (~,) where, d', s', b' are connected to d, s, b by a 3 x 3 unitary 

matrix containing three angles and a phase factor (Kobayashi-Maskawa parameters)ll 
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As in the case of leptons, we start by writing down a gauge invariant 
lagrangean which requires that these quarks are massless. The Higgs mechanism 
requires an interaction between the quarks and the Higgs scalar field. If we 
call $(x) an isodoublet of scalar fields we may assume the SU(2) I U(l} 
transfonnations (with g > O, g' < 0) : 

exp ! lg A • i I exp l i r (1 - y) B ! Ql,2 

exp ! -i r y B I "R 

exp l -i r y B ! CR 

exp l i !' (2 - y) BI (dc)R 

exp l ; f (2 - y) e ! (Sc)R 

exp ! i g A • ~ l exp l- i g' t I $ . 

We shall see that the quark model assumes y ; ~· 

With the field ~(x) we can define another field 

where the matrix c satisfies the relationship 

(for instance, C may be taken as iT2}. 
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Then if under the SU(2) group 

then 
t + ~"' o ~ = c (o cp ) = i t. "2' cp 

that is, i is covariant to cp under the SU(2) group. But under the U(l) 
group, if cp transforms 1 i ke 

0 cp = - i g' ~ cp 

then 

0 i = i g' ~ i 

so ~ is an isospinor like cp but has opposite hypercharge 

Therefore we can construct the following SU(2) « U(l) invariant 
interactions with the Higgs field : 

Sf1' $ = ) Gl 1i1 dcR + G2 1i1 5cR + G3 1i2 dcR + G4 1i2 5cR t $ + 

+ l Gs ii1 "R + G5 ii1 cR + G1 ii2 "R + Ga ii2 cR I$ + h.c 
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Now if we transform o1 and o2 and then uR and cR (which 
have the same hypercharge) and dR and sR by rotations 

Q'1 Q1 cos a - Q2 sin a 

n• 
' 2 Q2 cos a + o1 sin a 

u' R uR cos B - cR sin B 

c' R CR cos B + UR sin B 

d' 
~ dR cos y - sR sin y 

s' R sR cos y + dR sin y 

then the piece of the lagrangean 

where 

~ I 

0a Ql,2 = (aa + i 9 ;a. ; + i ! (l - Y) 8a)Ql,2 

Da UR = (aa - i ~· y Ba} UR 

Da CR = (aa - i !' y Ba) CR 

Da (dc)R = (aa + i ,. (2 - y) Ba)(dc)R 

Da (sc)R = (aa + i ~·(2 - y) Ba)(sc)R 
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remains invariant with new constants G'i as linear functions of the 
original Gi. One can then chose the angles a, B, y so as to have 

G' 
6 

::: G' 7 ::: 0 

This choice together with : 

( 
0 

x (x)) 
1 a+ --
l'l. 

<P (x) 

'4> (x) ( a+ _l_ x (x) ) 
./Z 

0 

will give us 

+ other terms 

As the quark eigenstates of the quantum number operators conserved by strong 
interactions are u,d,s,c we want this lagrangean to be diagonal in the 
fields d and s as well as in u and c. As 

_27'$ = (G5a) ii u + (Gsa) C c +a! G1 cos2 ec + G4 sin2 ec~ d d + 

l 2 .2 ~- - -+a G4 cos ec + G1 sin ac~ s s +a (G1 - G4) sin ec cos ec(ds + sd) + 

+ (G2•> cos (2 ec) l a s + s d + tg (2 ec)(S s - a d) I + other tenns 
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we see that the terms in s d, a s are eliminated for 

2 G2 
tg 2 ec = G G 4 - 1 

In this way the five coupling constants G1, G2, G4, G5, G8 gives rise to 
the Cabbibo angle ec and the four quark masses. 

VIII. 13 - THE SALAM-WEINBERG QUARK CURRENTS 

The generalization of the lepton Salam-Weinberg model to other 
fermions can best be made if we recall that the interaction between leptons and 
the vector fields is uniquely determined by the fonn of the covariant derivative 
applied to the left and right-handed components of the basic lepton fields 
(and this form is imposed by the requirement of gauge invariance). Thus, from 
the derivatives : 

given in (VIII, 6) and from the piece of the lagrangean 

~· = [ i ya D L + R i ya D R 
a a 

we derive for the interaction between leptons and the vector fields 

· r .// µ Ta ~· µ µ - R .;z, · t = - g a [ y ..,,... L - B [ y L - g' B R Yµ rn a µ r.. µ 

GFT T 
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Now we remember that the isospin and the hypercharge operators, T and Y are 
such that 

so : 

[ T, L] = -i L 

[v,L]= L 

(T,R)=o 

[v, R ) = 2 R 

~ nt = 9 JI'· [ Y µ [ l, L] - ! ' Bµ I [ y µ [ Y, L ] - R y µ ( Y, R] ! 

We now consider the relationship between ~' Bµ and the electromagnetic field 
Aµ and the neutral boson field Zµ, {VIII. 29) which gives 

Bµ = zµ sin ew + Aµ cos ew 

and also {by {VIII. 18)) : 

all 1 = ...!_ {Wµ + wii+) 
n. 

al-1
2 

= _!_ (Wµ+ - Wµ) 
l'l 

The lagrangean above becomes 

~nt = -,;wµ [ Yµ [ T-. L 1 + ;zwµ+ [ Yµ [ r+, L) -
+ g {Zµ cos ew- Aµ sinew> [ \

1 
[r3, L )+ 

-!' (Zµ sin aw+ Aµ cos aw)\ [ Yµ [ y. L] + R Yµ [ y. R] ! 



where 

So 

where : 

T- = T1 - i T2 

T+ = T1 + i T
2 
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2°y= -gsin ew API[ Yµ (r3 +{, L]+ ihJ{, RJ! 

y' z = g cos ew zP) [ Yµ [ T 3 - { t 92 ew• L] + R Yµ [- { tg2 ew• R] ! 
Now we set 

then we can write for the electromagnetic interaction 

Now 

[Q, L]=[T3+{. L]=-(:;-v L=-i)(U)-(5 n((~·)L (nl 
[ Q, R ] = [ l, R ] = R :: eR 
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So 

and we see again that g sin ew = e. 

Thus we get, in a similar procedure 

I 

.!£' = - e jµ Aµ y y e = g sin ew 

(VIII. 41) 

_?'F = g = __[_ 
w 2./'l 

- µ 5 = e y (1 - y )v ; 

2 2 1/2 
g = g = (g + g' ) 
z 2 cos aw 2 
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= 2 ) [ Yµ [ r3 - sin2 ew Q, L J + 

+ii Yµ (r3 - sin
2 ew Q, R] I= 

= { 1 V Yµ (1 - r 5
)v - e Yµ (1 - y5

)e + 

+ 4 sin
2 ew ce Yµ e) I = 

Also 

_27' e ~ - µ T3 • 2 .µ I Z 
z = sin ew cos ew l L Y -Z- L - sin °w J (y) µ 

Now we are ready to take the quarks into account. We generalise the 
above formulae for the currents to any fennion field w, L being replaced 
by $L and R by $R. Then we have for the basic quarks fields 

- [ "f. QI] = ~ QI - [ T, Q2] = ~ Q2 

[ T, "RJ =[T, (dclR]= [T, (sc>R] =[T, cR] = 0 
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2 1 2 1 Also as we want that the charges Q of u,d,c,s be !' - !' l' - j respectively 
we have 

[ Q, dl,R ] = - i dl,R 

[Q, cL,R J = j cL,R 

- [ Q' SL, R ] = - j SL , R 

Then for the Cabibbo mixtures 

de = d cos e + s sin e 

sc = s cos e - d sin e 

we get 

- [ Q, (dc)L,R] = - i (dc)L,R 

- [ Q, (sc\,R] = - i (sc)L,R 

Therefore we have for the hypercharge : 

(VIII. 4la) 
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al so : 

That is 

Then also : 

[ y' "R ] = [ 2 Q - T 3' "R ] = j "R ; 

[ Y' {dc>R] = [ 2 Q - T3' (dc>R] = - j {dc}R 

[ Y' {sc>R] = - j {sc)R 

We thus obtain for the quark currents : 

jµ {y) = i {u yll u + c yµ c} - i ca yµ d + s yµ s) 

jµ{W) = u yµ (1 - y5) de+ c yµ {l - y
5

} sc ; 

jµ(o) =} ! Uyµ (1 - v5) u +Cyµ (1 - v
5

) c -

(VIII. 42) 

_a yµ (1 _ y5) d _ s yµ (1 _ y5) • I -2 s1n
2 ew jµ(y) • 

. µ 2 • 2 .µ = J 3 - s1n ew J {Y} 
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VIII. 14 - THE SUPPRESSION OF THE STRANGENESS-CHANGING NEUTRAL CURRENT 

We note that the neutral current jµ(O) above, which is coupled to 
the field Z~, does not contain terms of the form d yµ(l - y5) s which 
would give rise to a strangeness changing neutral current. This is because, 
besides the tenns u yµ(l - y5) u and c yµ(l - y5) c, there occur the terms 
in de and sc which are such that 

- µ 5 - µ 5 de y (1 - y ) de + sc y (1 - y ) sc = 

and we see that the strangeness changing terms a yµ(l - y5) s cos ec sin ec 
and s yµ(l - y5) d cos e sin e cancel out : 

c c 

It was in order to have such a suppression mechanism that Glashow, Iliopoulos 
and Maiani proposed the charmed quark and the Cabibbo combination (VIII. 41a). 

Thus, to lowest order, the reaction 

cannot occur through exchange of a Z boson. 

However, as shown in the figures below, the KL being thought of as 
composed of a pair quark-antiquark (d s), there can be virtual emission of a 
w- and a w+ which then give rise to the creation of a pair µ+,µ-.As the 
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d quark emits a w- boson it can go over into a u quark with a coupling 

- .JL. cos ec and the u quark annihilates s with a coupling - .JL. sin ec 
21Z 212' 

and emission of a w+ (according to (VIII. 41), (VIII. 4la), (VIII. 42) : 

- __[__ 
2/Z 

cos a c 

W
+ 

lJ 

lJ 

I 

w-: : il 
f 
I . 

u 

Figure VIII. 6 

But the d quark can also go over into a c quark 

Lr 
I I 

+ __[__ sin ec ~d 
uz 

:w+ 
I 

I 
C I 

~~ - _JL cos ec 
s 2..'2° 

Figure VII I. 7 

with coupling .Jl_ sin e and the c quark turns over into a s quark with uz c 

coupling - ..Jl. cos ec. 
212' 
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To these diagrams with four vertices we must add the following ones 

of the same order : 

+v-µ µ V -
µ 1J . 

: z : z 
~ I 

Figure VIII. 8 

which involve intermediate W and Z bosons. 

The amplitude for these diagrams would be cancelled if the masses 
of the u and c quarks were equal, as a result of the sign difference of the 
coupling constant in the diagram with u and c respectively. This amplitude 
will have a term of the form, assuming m2 >> m2 >> m2 

w c u 

_L (m2 - m2 ) "' Gi:a 2 2 
4 

c u cos ec sin ec = ~ (m - m u) cos ec sin ec 
Bmw m w c 

which will have the role of an effective coupling constant. From the study of 
this reaction and of the reaction R

0 
+ K

0 
an estimate has been made of the mass 

of the charmed quark 

"' me = 1.5 GeV 
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VIII. 15 - ESTIMATES OF THE QUARK MASSES 

Here are the estimates of the masses of quarks (those of the u and 
d quarks are estimated from hadron masses and the baryon magnetic moments) 

I\, 
ms ~ 500 MeV = mu + 150 MeV 

I\, 
me Sd 1,5 GeV = mu + 1,2 GeV 

The last estimate results from the observation of the upsilon 
particles 

T (9.4), T' ( 10.0), T 11 (10.4) 

which are particle states with masses 9.4 GeV, 10 GeV and 10.4 GeV respectively. 
They are bosons with spin 1 and are believed to be 1- - s wave bound states 
of a b quark and 6 antiquark. They are analogous to the charmoniurn particle 
states w(3.1) and ~(3.7) which are assumed to be bound states of a charmed 
c quark and an antiquark c. 

Now the D-mesons have a mass of 1.86 GeV and they are structures 
with a charm quantum number c = 1 and zero spin, zero strangeness and 
isospin j 

c u 
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We may thus write for the mass of the lowest state : 

whence 

me "' 1,5 Gev 

Similary for a B meson with a composition of the type b d or 
b u one would have, with evidence at CERN for such a meson and 

ms"' 5.3 GeV 

then 

1 
ms"' 5.3 GeV ~"2" m.y. + 300 MeV"' mb + mu,d 

so 

VII I. 16 - THE PARTON-QUARK MODEL 

As we saw in§ VIII. 10, the Salam-Weinberg model describes well 
the neutrino-lepton scattering experiments and predicts, for example, a cross­
section 

for the reaction 

cr = 1.3 x 10-42 E cm2 
v 
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for 

sin2 ew = 0.23 

In order to check this model for hadrons, as the interactions of 
photons as well as of the W and Z bosons with quarks are theoretically 
known, one has to study how to obtain cross-sections for hadron-electron and 
for hadron -neutrino collisions from the knowledge of the above interactions. 
In other words, one needs to know how the quarks inside hadrons will contribute 
to the hadron-neutrino collisions or hadron-electron or hatlron-phot.on 
interaction processes. 

Consider the reaction neutrino-proton 

where h indicates hadron particles. 

Usually, experimentalists measure only the energy and the angle of 
the outgoing muon µ- as well as the missing mass L 2as defined by: 

where Ph is the momentum of the hadron system h. If p is the momentum of 
the proton p and k , k those of the incident v and of the outgoing µ-

v µ µ then : 

,,-.,,2 = {p + k - k )2 ./ll v µ 

Such a reaction where the system h is not detected is called an inclussive 
reaction. 

The proton is formed of two u quarks and one d quark (an anti­
symmetric combination of such quarks of different colours) 

p "' u u d 
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If the interaction between quarks inside the proton during the 
above collision process is such that the interaction of the neutrino takes 
place with each quark as if the latter were free then we may consider the cross­
section for the reaction as the sum of the cross-sections for the interaction 
of the neutrino with each quark (Fig. VIII. 9) 

h 

p 

duu 

Figure VIII. 9 

In this reaction only the quark u can absorb a virtual w+ and 
give the final hadronic system h with the remaining spectator quarks. 

For a reaction with antineutrinos 

- + 
vµ + p ~ µ + h 

the above hypothesis of incoherence of the scattering in the deep inelastic 
region gives the following picture (fig. VIII. 10) 
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h 

+ 

p u uuu 

Figure VIII. 10 

The quark inside the Proton which absorbs the ~lrtual boson W receives a 

large ene'1lY-nronient""1 transfer from the incident neutrinos. A /ufpothesis in this 

Picture is that thfs excited quark Ifill recombine with the other quarks to fonn 

the final hadronic s.vstern h. 

In the above figure, if 

h '\, u d d 

we have the react1on : 

-
+ 

"u + P -+- JJ + n 
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But we could as well have the reaction 

- + -
"1-1 + p -+ 1-1 + 1T + p 

in which case the diagrams would be of the type of Fig. VIII. 11 

Figure VI II. 11 

In this case we see that a pair u u is created of which u 
combines with d to form the pion n and the u quark of the pair combines 
with u and d to give the final proton. 

Thus besides the structure quarks of the hadrons, called valence 
quarks there are also virtual quark-antiquark pairs which are said to constitute 
the quark sea. Such pairs will contribute to the production of the many hadron 
sytem in the fi na 1 state h for high energy co 11 is ions. 

As we have said previously, the structure quarks of baryons are of 
different colours and in such a combination that the baryon ground state wave 
function is colour antisynunetric : hadrons are, by hypothesis, colourless. It is 
also assumed that all observed particles are colourless, that is why (coloured) 
quarks must not be observed in the state of a free particle. The last statement 
leads us also to the so-called jet-hypothesis : quarks {as well as all other 
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components of hadrons, called partons) endowed with large momentum, produce 
a jet of hadrons (fragmentation). 

The parton model 59-GB), developed mainly by Feynman, was invented to 
describe "the deep inelastic collisions of hadrons with photons, electrons or 
neutrinos ; in these collisions the hadrons are shown to behave as fanned of 
small parts -the partons- which scatter the incident particles, as if they 
were free point-like particles. 

It is convenient, in the study of such deep inelastic processes, to 
introduce certain kinematic variables. 

Consider, in general, the Fig. VIII. 12 

Ph 
~ ... " 

I/ 
k 

Figure VIII. 12 

A light particle with momentum k (an electron, a neutrino or antineutrino) 
interacts with a nucleon with momentum P through the virtual particle (wavy 
line : a photon or a W boson or a z boson) to give an outgoing light particle 
with momentum k' and a system of hadrons h. 

The momentum transfer is 

q = k - k' = Ph - P µ µ µ 

GFT. U 
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We define the variable Q by 

2 2 Q = - q = - t 

The variable s is 

s = (k + P) 2 

Another variable, denoted by v, is defined as (M designates the proton mass) 

v = P.q IM 

whereas the so called scaled parameters x and y are 

x = 

y= 2Mv. 
s 

(VIII. 43) 

In the laboratory system the nucleon is initially at rest so 

P = (M, 0, 0, 0) 

If we neglect, at high energies, the lepton mass, then 

k = (E, E, 0, 0) 

k' = {E', E' cos e, E' sine, O) 
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The direction of k is taken as the O x axis and the 0 z axis is perpen­
dicular to the plane k 0 k' (Fig. VIII. 13). 

k' 

Figure VIII. 13 

k 

Laboratory system 

In this system therefore : 

s = (k + P) 2 = (E + M) 2 - E2 = 2 M E + M2 

~ 2 ME 

thus ~ in the laboratory system is the lepton initial energy ; 

= 2 E E' (1 - cos 0) 

so 

Q2 
= 4 E E' sin2 ~ > 0 

2 we see that the momentum transfer q is a space-like vector q < O. 
µ 
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The variable v, in the laboratory system is such that 

v = E - E' 

v is the energy transfer in the collision. 

Also 

2 sin2 e '2" 
£' 

i - r 

How do we use these variables in the collision cross-section for the 
deep inelastic reaction above ? 

The conventional calculation69- 78} gives the differential cross-section 
for an outgoing lepton with energy between E' and E' + d E' and three-

d2 a 
dimensional momentum inside a solid angle do with angle e, a E' a 0 where 

d n = 2 ir Jd cos el 

With the variables above we have : 

d2 a ir d2 a 
d Q2 d v = -E -EI d E' d Q 
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For the cross-section for electron-nucleon deep inelastic scattering 
it is found, in the laboratory system : 

d2 (J 

dE' d n 
a2 l 2 . 2 e w 2 e w 

4 sin "Z 1 + cos "Z 2 
4 E2(sin ~) 

for e + p -+ p + h 

2 
where a = ~ and 

W 1 = W1 ( Q 2 ' ") 

Wz = Wz (Q2, v) 

are structure functions associated with the proton vertex. For the neutrino­
nucleon scattering the corresponding cross-section is 

d
2 

a = G/ E'2 j 2 sin2 e w + cos2 e W - ~· sin2 e W I 
dE' d n °2,;"2 "Z l "2' 2 M "2' 3 

for " + p .,.. µ - + h 

In term of the variables x and y we have (with neglect of terms of order ~ ) : 

(VIII. 43a) 
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Experimentally it is found that these structure functions have the 
following behaviour : in the high energy region known as the Bjerken limit : 

with 2 
x = L fixed 

2Mv 

the structure functions have the following limiting behaviour 

2 M w1 (Q , x} -+ F1(x) , 

v w2 (Q2 , x} -+ F2(x) , 

v w3 (Q2, x} -+ F3(x} 

where the functions F1, F2, F3 do not depend on Q2 but only on x. 

(VI I I. 43 b} 

This means that in this reaction a structure determined by a mass or 
length paramenter is essentially absent. 

The parton model describes these scaling properties. According to 
this model a high energy nucleon with large momentum P is regarded as 
incoherently formed of massless point-like constituents, the partons with momentum 
pi, the sum of which gives the momentum P : 

p. = x. p + p, t 
1 l l 

-+ 
where x. is the fraction of the total momentum P shared by the parton 
along P

1 
and Pit is the transverse component of pi 

-+ -+ t 
P. P; = 0 

E x. = 1 
i l 
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If the transverse component IPitl is bounded then in the limit 
we have for the massless i-parton energy 

E = V P2 + M2 is the proton energy 

And so in the limit P2
-+ ao, if ,;itl is bounded we have 

"' Ei = X; E 

Thus 

"' Pi = Xi P 

The so-called quark-parton model identifies the partons with quarks 
and antiquarks. 

Let us now suppose that the deep inelastic scattering of Fig. VIII. 
takes place by elastic scattering from each parton 

k' 

pi 

Figure VII I. 14 
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Then the virtual quantum is absorbed by the parton 

in this process is : 

we have 

Q2 = _ q2 = _ (p'. _ p.)2 = 2 P· p'. , , , , 
since partons are massless (at high energies). Now 

I 2 - I P; q = P i P; - P; - P i Pi 

therefore 

2 Q = 2 pi q = 2 xi P q 

and as 

\) = I:.s. 
M 

we obtain 

Q2 
- = X· 
2vM 1 

and the momentum transfer 

we see by the formula (VIII. 43) that the scaling variable x is the fractfon 
xi of the proton momentum shared by parton i. This means that the deep inelas­
tic collision results from the interaction between the virtual quantum emitted 
by the lepton and a quark with momentum 

p = x p , 
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The deep inelastic scattering 

will then be described, in first approximation, by the scattering with the 
valence quark d in the proton. The cross-section for the latter is the same 
as for an electron, namely for the reaction 

which is 

r.. 2 
~F 

=-
11 

Therefore, if we designate with d(x) dx the probaf>ility that a d 

quark is inside the proton with momentum fraction between x and x + dx we 
may write : 

However, if we take into account the existence of the quark sea, the 
reaction may take place not only as indicated in Fig. VIII. 9 but also by the 
transition of an antiquark u of the sea into a d (Fig. VIII. 15) 

Figure VII I. 15 
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Thus, if u(x) dx is the probability of finding an antiquark u with 

momentum fraction between x and x + dx in the high-energy hadron we must 

have : 

Now it is known that 

dCJ -
G 2 

cos2 ec at (vµ d -+ µ u) F 
1T 

dcr ( - -
G 2 

(1 - y) 2 cos2 ac d) F at "µ u .... µ =-
1T 

Therefore, as 

dx dt = xs dx dy 

we shall have : 

d2 a - G 2 \ I crxay {vµ p .... µ h) = ~ s l x d{x) + x u{x)(l - y)
2 cos2 ec 

(VI I I. 44) 

The functions d(x), a(x), u(x) and u{x) satisfy the equations 

fo
l 

dx{u(x) - u(x)) = 2 

fo
l 

dx(d(x) - d(x)) 1 

for a prC>ton since this particle has two u quarks and one d quark. 
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Besides these relations we impose : 

Q = J :dxlj (u(x) -ii(x)) + j (c(x) - C(x)) -j (d(x) -d(x)) -j (s(X) - S(x) ! = 1 

for the proton charge ; 

T z = f: dx { ) u ( x) - ii ( x) - ( d ( x) - d ( x)) ! 
for the proton isospin z component ; 

S = J~ dx (s(x) - S(x)) = O 

for the proton strangeness ; and 

C = J~ dx (c(x) - C(x)) = O 

for the proton charm. 

1 
! 

As the proton has two valence u quarks and one d quark and the 
neutron has two valence d quarks and one u quark, distribution functions 
for the neutron are obtained from those of the proton by the substitution 

u(x} (for proton} + d(x} (for neutron} 
(VII I. 45) 

d(x) (for proton) + u(x) (for neutron) 

and 

s(x) (proton) + s(x) (neutron) 

c(x) (proton} + c(x) (neutron) 

and similarly for the antiquark distributions. 
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One thus obtains 

2 G 
2
sx \ ~ a~ d~ (vµ n + µ- h) = ~ l u(x) + d(x){l - y}

2 
\ cos

2 ec (VII I. 46) 

This expression as well as (VIII. 44) hold true if we neglect the contribution 
of the quark sea with s and c quarks. 

If one takes all quarks and antiquarks of the sea into account, 

namely : 

da - da -at (vµ s + µ c) = 0£ (vµ d + µ u) 

and 

da - - - do - - -at (vµ u + µ s) = at (vµ c + µ d) 

2 
GF 2 2 -;r- (1 - y) sin ec 

da - - - do - - -0£ (vµ c + µ s) = at (vµ u + µ d) 

we get 

2 G 2 l ~x a a/"µP +µ"h) = + s x [ d(x) + s(x)] + [ ii(x) + C(x)] (1 - y)2 \ 

2 G 2 

t i)y<"µn+ µ "h) = + s x l [ u(x) + s(x)) + [ d(x) +'C(x)] ( 1- y)2 \ 
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For antineutrinos one finds : 

2 G 2 • l t (ly (;;µP + µ+h) = + s x)[u(x) + c(xJ] (1-y)2 + [acxJ+S(xl]j 

2 G 2 l 
gx dy c;;µ" + µ +h) = + s x Jr d(x) + c(x) ] (1- y) 2 + [ ii(x) + S(x)] I 

A comparison with the formula (VIII. 43a)taken in the Bjorken limit 
(VIII. 43b) namely : 

g~ gi" El = ~ s) x (F1(x) - '.;cxJ}x(F1(xJ + ~xJ]c1- yJ
2 

+ (F2(x) - 2 x F1(x)J (1- y) I 
d
2 

a ( v p ) GF 
2 l [ F 3 ] [ F 3 l 2 dx dy = ~ s x F1 (x) + -jix) +x F1 (x) - -j(x)J(l - y) 

+ (F2 (x) - 2 x F1(x)J(l - Y) l 
gives for the structure functions : 

2 X F1VP(x) = F2VP(x) = 2 x [d(x) + s(x) + u(x) + c(x)] 

F3vp(x) = 2 [u(x) + c(x) - d(x) - s(x)] 

2 x F1\;p(x) = F2VP(x) = 2 x [ci(x) + s(x) + u(x) + c(x)J 

F3vp(x) = - 2 [u(x) + c(x) - d(x) - s(x)] 
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The substitution rule (VIII. 45) gives us innnediately the stucture 
- - + functions for the case v n ~ µ h and v n ~ µ h. 

It is of interest to have the cross-sections for isoscalar targets, 
that is formed of nuclei which have the same number of neutrons and protons 

Z ~ A - ~ 

Then the measured quantity is the average cross-section for reaction with p 

and with n : 

The total cross-section as defined by 

1 d2 

f 
0 iso a,·so = dx dy 

0 
dx dy 

is 

G 
2 l 1 1 } ai 50 (v) = ~ S tdx(u(x) + d(xJ + 2s(x)) +j tdx x(u(x) + a(x) + 2c(X)}\ 

Therefore the ratio 

where, if we neglect the contribution of the s, s and c, c quarks of the sea, 
M and M are : 

M = J: dx x (u(x) + d(x)) 

M = 1: dx x (U(x) + d(x)) 
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If the contribution of M is negligible we obtain 

R ~ 1 
- j 

Experiment confinns this small contribution of u, d and of s, c, s, c since 
the experimental value of R is : 

R = 0.38 ± 0.02 (Gargamelle) 

= 0. 35 ± 0 . 04 { NAL) 

VIII. 17 - THE VALUE OF THE WEINBERG ANGLE FOR THE NEUTRINO-NUCLEON SCATTERING 

The calculation of the cross-section for the scattering reactions 

" + n + " + x' µ µ 

with neutral current interaction is carried out having in mind the expression 
of the neutral current jµ(o) for quarks as given in equation (VIII. 42). 

Let us call 

<vN> 
a(v + p + v x) + a(v + n + v + x 1

) 

R (~) = µ µ µ µ 
c a(v + p + µ- + h) + a(v + n + µ- + h') 

µ µ 

<vN> - - -a(v + p + v + x) + a(v + n + v + x') 
R (!!) = µ µ µ µ 

c a(v + p + µ+ + h) + a(v + n + µ+ + h') 
µ µ 

These are ratios of neutral to charged current reactions. 
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. 140) 
Then one may write with Sehgal : 

R 

<vN> 
n 1 2 . 2 2 {l 1 . 2 )2 

(c-) = ('Z - '3' sin aw> + 'Z - 3 sin aw + 

1 . 2 20 . 2 2 = "2' - sin ew + ""l7 (s1n ew) 

<vN> 
n 1 2 . 2 2 (1 1 . 2 2 R (c) = ("'2' - 3 sin ew> + 'Z - '3' sin aw) + 

[(2 . 2 )2 (1 . 2 0 )2 ) + 3 3 sin aw + '3' sin w = 

1 . 2 20 ( . 2 0 ) 2 = "2" - sin ew + 9 sin w 

In these calculations one keeps the contributions of the u and d quarks only. 
These expressions are shown to be the lower bounds for R<vN> and R<\iN> 
respectively when this restriction is relaxed under certain additional assumptions. 

Experimentally it is found for the weighted average of results from 
different laboratories 

<vN> 

R (.!!) 
c 

= 0.29 ± 0.01 

<vN> 
R (.".!) 

c = 0.35 ± 0.025 

implying a 'Val ue for 8W : 

sin2 ew = 0.24 ± 0.02 

145) 
(Ba ltay, 1978) · 



- 321 -

According to Paschos and Wolfenstein 63) the quark-parton model dependence 
in the previous calculations is eliminated if one computes the ratio 

<vN> <vN> 

s = 
0 neutral current 0 neutral current 

<vN> - <vN> 
0 charg. current 0 charg. current 

to obtain 

The data indicate agreement for 

• 2 sin ew = 0.22 ± o.os 

All data so far available point to a consistently unique value for 
the Weinberg angle to describe different experiments. The table VIII. s gives a 
summary of this excellent verification of the Salam-Weinberg gauge field theory 
of the electro - weak interactions. 

Let me finally point out that chromodynamics gives a satisfactory 
justification of the assumption of the parton model, that partons behave as 
free particles in the infinite momentum frame of reference. This theory, which 
describes strong interactions by the coupling between quarks and the massless 
colour gluon fields (see§ VIII. 10), has the property that these interactions 
become very small for very large momentum transfers and therefore, for small 
di stances. This property is ca 11 ed asymptotic freedom and fo 11 ows from the fact 
that the effective coupling constant in cbromodynami cs is a deereas i ng function of 
Q
2

. For 1 arge Q2, perturbation theory can thus be used and cal cul at ions. can be 
compared with experiment. For small Q2 or large distances, the coupling constant 
increases and becomes larger ~nd larger and calculations are more difficult to be 
made by present techniques 124-13.3) 

GFT - II 
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PROBLEMS 

VIII - 1. Establish the equations (VIII. 4b) for the correspo~ding infinitesimal 
transformations. 

VIII - 2. Given the lagrangean of a Yang-Mills field in the absence of matter 

.£? __ 1 µv 
'l' F a Fµvia 

a) Write the field equations and specify which are the equations of motion and 
which are the constraint equations. 
b) Give the canonical equal time conunutation rules and the hamiltonian in the 
Coulomb gauge A0 = O, ak Ak = o. Read Abers and Lee, ref. 104, especially a o 
§ 13. 

VIII - 3. Show that the charges associated with the currents jµa(x) in gauge 
field theories satisfy the same commutation rules as the generators of the 
gauge group. 

VIII - 4. From Problem VIII. 3 it follows that if Q = Q1 - Q2 is the charge 
associated with the current 

jµa =Lyµ (1 - y5) ~ L ; L = (: )L 

which is coupled to the boson field Wµ, then Q3, given by 

03 = i [Q, Q+] 

is also a gauge charge and must be associated with a current jµ3(x) coupled 
to a gauge field, call it wµ 3(x), with the same coupling constant. 

If jµ3(x) is not the electromagnetic current, it is a new neutral current cou­
pled to a new field Z and this is what is predicted by the Salam-Weinberg 

µ 
SU(2) I U(l) model. 
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Another possibility is to assume that j~3 (x) is the electromagnetic current 
+ and that therefore Q3 : Qe' Q, Q fonn an SU(2) algebra. 

Discuss this case, the SU(2) model proposed by Georgi and Glashow. The fact 
that Qe can have zero eigenvalue and is a generator of SU(2) requires an 
integer spin representation of the latter group such as S0(3) and this 
implies the need of postulating two heavy leptons, one positively charged and 
one neutral. 
Consult Georgi and Glashow, ref. 135 ; 8jorken and Llewellyn-Smith, ref. 136 ; 
and L. O'Raifeartaigh, ref. 109, especially pag. 204 and foll. 

VIII - 5. Study the method of path integral quantization and formulation of 
field theory. Consult Coleman, ref. 24, especially § 4 and 5 ; Taylor, ref. 185, 
especially Chaps. 10 and 11 ; Nash, ref. 186 ; Abers and Lee, ref. 104, especially 
§ 11 and 12. 

VIII - 6. Study the dimensional regularization method. Read C. Bellini and 
J.J. Giambiagi, Nuovo Ciment 128, 20 (1972) ; Phys. tett. 408, 566 (1972) ; 
G. 't Hooft and M. Veltman, Nucl. Phys. 448, 189 (1972) ; Nash, ref. 186; 
Taylor, ref. 185, Chaps. 13 and 14. 

VIII - 7. For the experimental investigation on the predictions of the SU(2) a U(l) 
model, study refs. 140-147, especially Musset and Vialle, ref. 143 ; Baltay, 
ref. 146 ; Steinberger, ref. 147. 
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CHAPTER IX 

Gauge Theory with Lepton Flavour 
Non-Conservation 
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IX. 1 - SU(2) ~ U(l) GAUGE THEORY 1'1ITH HEAVY LEPTONS 

It is well known that the neutrino which accompanies the muon in 
pi-decay 

7T + µ + "µ 

has its own (leptonic) muon quantum number which is different from the electron 
quantum number of the neutrino which accompanies the electron in the decay 

1T 

These numbers are given in the table V in the introduction and the 
separate exact conservation of Le and Lµ is invoked to explain the lack 
of mixture of the two types of neutrinos as well as the absence of the muon 
radiative decay : 

µ -+ e + Y (IX. 1) 

However, one might inquire into whether the conservation of Le and 
of Lµ is not exact so that very small rates of reaction (IX. 1) would be 
possible. 

The idea of neutrino fllixture was first studied by Pontecorvo140). 

If one tries an analogy with the Cabibbo mixture of the quarks d 
and s and assumes an interaction of the form 
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where 

v1 = ve cos e + v~ sin e 

then it is easy to see that the rate for reaction {IX. 1) is zero. This is 
sinilar to the GIM mechanism of suppression of strangeness changing neutral 
currents and results from the cancellation of the diagram amplitudes (Fig. IX. 1) 

\ w-
·- --... . .. \~ -~---

+ = 0 

Figure IX. 1 

(we omit the diagrams where y is emitted by µ or e). 

This is because both ve and vµ are both massless and the 
propagator is the same for both. 

An extension of the Salam-Weinberg theory to encompass possioTe muon 
number non-conservation was proposed by Ragiadakos and the authorl36);n 1976. 
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For this, one must assume a heavy neutral lepton L
0 

and mix 
it with ve and vµ in the following way. Call 

(IX. la) 

and define the three linear combinations 

"

I • a 
J = j k "k (IX. 2) 

where the ajk are matrix elements of the S0(3) group 

The following left-handed doublets are defined : 

1 5 ( "
1

1) el = '2' {l - Y ) e , 1 5 ( "
1

3) µL = 'Z ( 1 - y ) 
µ 

(IX. 3) 

and the singlets : 

1 5 eR = 'Z (1 + y ) e, 1 5 
µR = "2' ( 1 - y )µ 

!£1 1 5 
i = 2 (l - y ) Lo, 

(// 1 5 
c:I, R = ~ ( 1 + y ) Lo 

(IX. 3a) 
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After application of the Higgs mechanism with the requirement 
that the masses of v and v vanish whereas that of the heavy lepton is e µ 
different from zero, one obtains the effective lagrangean with the following 
currents : 

is the charged current which interacts with the W-field ; and 

is the neutral current in interaction with the Z-field. 

Clearly the fact that the hypothetical neutral lepton L
0 

is massive 
gives rise to a possible garmna-decay of the muon, the diagrams of which are 
given in Fig. IX. 2 {omitting the diagrams with y emitted by µ or e) : 

e H\ __ e x __ 
, ... , , , ... 

+ + 
'Vµ 

Figure IX. 2 
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The amplitude for the reaction of Fig. (IX. 2) will be of the form : 

2 2 A(µ+ e + y) ~ e g a32 a12 ml I (Pe, Pµ, K, ml, "\J) 

where k2 
y.k +-

f 
d4 k - a 5 ml 

I = ~ u (Pe) y (1 - y ) 2 2 2 
( 21T) <t k ( k - ml ) 

1 r Ea(K ) 1 (1 5) ( ) 
( P 

_ k) 2 _ m2 a y 2 2 Ya - Y u P µ 
µ W (Pe - K) - m W 

and 

r = (Pe + p - 2K) , K = p - Pe , among other tenns. a µ a y µ 

In virtue of the orthogonality of the coefficients ajk one has 

a31 all + a32 al2 + a33 al3 = O 

Therefore the sum of the propagators of the intermediate neutral leptons becomes 

If the additional neutral lepton were massless the amplitude A(µ + e Y) would 
vanish. 
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One obtains for the ratio of the decay rates µ + ey and 

µ + vµ + e + ve : 

The coefficients ajk can be estimated in connection with the electron 
and muon production in the reaction neutrino-nucleon collisions. 

After this theory was proposed, experiments to find the reaction (IX. 1} 
led other physicists to rediscuss the model, as well as to suggest other 
mechanisms, such as the introduction of more than one doublet of Higgs fields 
(see Pontecorvo, ref. 142.). Experiments, however, indicate that 

R < 10.-9 

IX. 2 - SPECULATIONS ON LEPTON STRUCTURE* 

Another theoretical possibility for the non-conservation of lepton 
flavour is given by the speculative assumption that leptons may interact 
with hadrons at a primary level. The non-observation of such interactions 
for leptons at the present energies might result from the existence of some 
suppression mechanism. 

It is probably an unsatisfactory feature of the present theories that 
they assume that quarks and leptons are on the same theoretical level as 
fundamental constituents of matter. This assumption has ~elped to eliminate 
the triangle Adler anomalies. However, leptons share with hadrons the property 
of being observable and hadrons are assuned to be quark structures. If quarks 

* The reader may omit this section. 
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are retained as fundamental objects of which matter is composed one might boldly 
assume that leptons also have a quark structure. In order to have cancellation 
of the baryon number for leptons these must then be structures composed of a 
quark-antiquark pair coupled in some manner with hypothetical fundamental 
particles such as heavy leptons 148-152) . 

If one assumes that an electron behaves as a structure of the type 

where L1 is a convenient linear combination of three fundamental heavy leptons 
of nearly the same mass it may be argued that in this structure the binding 
forces are due to exchange of gluons between the quarks and of some exotic lepto­
baryonic quanta between the heavy lepton and the quarks. 

One may assume that the muon has a structure of the types 

and the tauon 

In this way a correlation is established between leptons and hadronic bosons 
such as pions, kaons and D-mesons. 

An effective lagrangean which makes possible to verify some consequen­
ces of these ideas is : 

- 5 ~ 
+ (T(l - y) L1) D + •.. ' + h.c. 
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and the choice of linear combinations of heavy leptons is designed to eliminate 
decays such as 

If one, however, considers thatthe pions interact with both electrons 
and muons through transition or the latter to orthogonal heavy lepton 
combinations L1 and L2 then it is possible to have a contribution to the 
gamma-decay of muons. 

These speculations on lepton structure lead to the difficult question 
of the nature of the neutrinos. 

But if quarks are not a part of leptons, one still probably needs to 
go down a step further in the question of lepton structure in order to achieve 
a satisfactory unification of leptons and hadrons. This question is, however, 
still very speculative and no experimental evidence brings so far any support 
at the presently known energies, for the existence of a quark content of 
leptons 148-162). 

PROBLEMS 

IX - 1. Given Dirac's equation for a fennion w(x) with charge e in interac­
tion with an electromagnetic field show that the field : 

lJ!c(x) = C t~(x) 

where C is a 4 x 4 antisymmetric unitary matrix such that 

tyµ -1 µ - c y c 

satisfies Dirac's equation for a fennion with opposite charge - e. 
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IX - 2. A global phase transformation on field operators ~(x) induces a 
transformation in Hilbert space U(a) with the charge Q as generator : 

~ + ~·(x) = e-iaQ w(x) eiaQ = eiea ~(x) 

If ~is the transformation in Hilbert space defining charge conjugation, 
show that : 

~ -l U(a) ~ = u-1{a) 

IX - 3. Dirac's equation for a free fermion can have the form 

! y5 
( - i E • VJ + s m I ~(x) = i 3~!~l 

from which one deduces : 

where 

+ + 
- i {E • V) wl{x) - B m WR(x) 

a wL(x) 
a t 

- i (t . V) wR(x) + em WL{x) = i 
a wR(x) 
a t 

~l = ~ ( 1 - y5) $ 1 5 
~R = ~ (1 + y ) ~ 

Consider the development : 

1JJ(x) = 1372 J d3p r ~ a(p, s) u(p, s) e-ipx + 
(2n) 2p0 s=l,-1 ( 

+ b + ( p , s ) v ( p , s ) e; px \ 

a) Obtain the equations for u(p, s) and v(p, s) for m = o in terms of 
t · p and y

5, pc=+ IPI. 

b) If s is the eigenvalue of the helicity operator E • P what are the 
IPI 
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1 5 1 5 the values of s for 2(1 - y ) u (p, s) and '2'(1 - y ) v (p, s) ? 

c) Show as a result of b), that a zero mass particle described by ·~L is 
either a left-handed particle (with negative helicity) or a righ-handed 
antiparticle (with positive helicity). 
d) What are the charge conjugates of ljJL and ljJR ? 

IX - 4. Show that the two-component neutrino theory is equivalent to the 

theory of Majorana [a Majorana field being defined by : 

ljJC = T) ljJ 

where n = ± 1 a two-component neutrino is described by 

1 5 5 (-I 0 ) ] wl = "2'(1 - y ) ljJ with y = O I 

IX - 5. Work out the Salam-Weinberg model with the fermions (IX. 1), (IX. 2), 
(IX. 3) , ( IX. 3a) . 

IX - 6. Concerning possible new leptons, read M.L. Perl, e+ e- physics today 
and tomorrow, SLAC-Pub-2615 (1980) and J. Leite Lopes, J.A. Martins Simoes and 
D. Spehler, ref. 162 and literature quoted there. 
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CHAPTER X 

Attempts at a 11Grand" Unification: 
The SU(5) Model 
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X. 1 - THE SU(5) GAUGE FIELDS AND GENERATORS 

If the strong interactions are correctly described by chromo­
dynamics, which is a theory based on the exact colour SU(3) gauge synnnetry, and 
if weak and electromagnetic interactions are correctly incorporated in the 
SU{2) ~ U(l) gauge theory, it is natural to ask if and how one can have a 
unifying theory of strong, electromagnetic and weak interactions. This is the 
------ .------- ------------------- -- -· .. ---··- - --
so-called grand unification. 

In chromodynamics one single coupling constant is introduced, call 
it gs, in the definition of the covariant derivative acting on the quark 
operator (IV. 32) 

Eight massless vector gauge fields A k(x) are thereby introduced associated 
lJ' 

to the eight generators of the SU(3) group. 

In the Salam-Weinberg theory we need two coupling constants, call 
them g1 and g2, in the definition of the covariant derivative which 
introduces a set of three gauge vector fields a and another gauge field u,a 
B (see VIII. 6). Here, therefore, there is no real unification in the sense 

lJ 
that one puts from the beginning two coupling constants in the model and four 
massless gauge fields associated to the four generators of the semi-simple 
SU(2) ~ U(l) group. Spontaneous synnnetry breaking develops mass for three of 
these fields and the result is the theory of weak and electromagnetic forces 
with U(l} gauge invariance. 

Cl early for a 11 grand 11 unification we want a group G which wi 11 

be larger than the product of those separately associated to the strong and 
to the weak and electromagnetic interactions 

SU(3)c ~ SU(2) ~ U(l) c: G 
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The direct product is of rank 4, i.e, it will have four diagonal matrices, 
then the rank of G will be at least four. The group considered by Georgi and 
Glashow SU(5), has rank four and twenty-four generators and it is the 
minimal to satisfy the requirements, as we shall see. To these, therefore, it 
is possible to associate twenty-four massless gauge vector fields and one 
single coupling constant, so that if ip represents a multiplet belonging to 
a SU(S) representation one will have : 

(X. 1) 

for the covariant derivative, where Tk are the generators in this representa­
tion. The twenty-four fields must comprise the ones we have seen before namely 
the gluon fields and w+, w-, z and y fields. As there exist (or we assume 
to exist) (at least) three families of basic fermions, namely 

we study only the generation of one family after which the lagrangean will 
be taken as the sum of terms of all families. 

The SU(S) matrices will act on a basic quintuplet ; we will take 
this to be fonned of the three right-handed colour components of a given 
quark flavour of the first family, call them q1, q2, q3 plus the right­
handed positron and electronic-antineutrino 

ql 

q2 

1P2 = q3 (X. 2) 

ec 

c 
-ve 
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This is because in the Salam-Weinberg model we postulated the 

left-handed doublet ( :e )L since neutrinos are left-hand polarized. So 

antineutrinos are right-handed and therefore its lepton companion must be 
designates charge conjugate. 

c 
e R' c 

The negative sign in vec comes from the following as seen in 
§VIII. 11 for the Higgs doublet, given a doublet like 

then the charge conjugate of this doublet which transfonns in the same manner 
under the SU(2) group is 

c 
t ( v~ ) 

e R 

where C is a 2 x 2 matrix such that 

t:r = - c-1 'T c 

If one chooses 

c = 

then we have : 

v c 0 
c( e) =( 

ec R -1 



L 
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Now the covariant derivative acting on {X. 2) will be of the form 
(X. 1) where ~ k{x), k = 1, ... 24 are 24 gauge vector fields and the µ, 

Tk are the generators in the five dimensional representation. These are of the 
fonn : 

where 

t = a 

0 0 

0 0 
).a I 0 0 

-----1-----
0 0 0 I 0 0 

0 0 0 : 0 0 

for a= 1, ... 8 

and Aa are the SU(3) matrices given in (IV. 28) 

0 

0 
I 0 

I Q - - - - - - -,- --
0 0 Q Q I Q 

' 
and nb are the SU{4) matrices 

ng = 0 0 

0 1) c 0 0 0 0 

0 ' n10 = 0 0 0 
0 0 0 i 

n12=0 
0 

o°) ( 0 0 -i 0 
0 ' n13 = 0 0 0 

0 0 0 

for b = 9, •.. 14 

0 0-i) ( 0 0 0 0 
0 

, nu = 
0 0 0 

0 0 0 0 

0 0 D. n14 ·O 0 0 
0 0 
0 1 

(X. 3) 

0 0 0) 0 0 1 
0 0 0 
1. 0 0 

0 

0 °) 0 0 0 

0 0 -i 
0 i 0 
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and then 

1 0 0 0 0 0 0 0 0 1 0 0 0 0 -i 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 1 0 0 ' tl6= 0 0 0 0 0 ' tit"· 0 0 0 0 0 t15= -
lb 0 0 0 -3 0 0 0 0 0 0 0 0 0 0 0 

0 ~ 0 0 0 1 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 -i 

t18= 0 0 0 0 ' tig= 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 1 0 0 0 i 0 0 0 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

t20= 0 0 0 0 1 ' t21= 0 0 0 (X. 3) 

0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 

t22= 0 0 0 0 0 ' t23= 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 -i 
0 0 0 1 0 0 0 0 ; 0 

1 0 0 0 0 
0 1 0 0 0 

1 0 0 1 0 0 t24=-
Im 0 0 0 1 0 

0 0 0 0 -4 
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There are four diagonal matrices, t 3, t 8, t 14 and t 24 and all the 24 matrices 
are traceless. 

Clearly, we want that out of the twenty four gauge fieTHs, eight be 
identified with the eight gluon massless fields, one must be the massless 
electromagnetic field and, after spontaneous symmetry breaking, three fields 
must give the weak W and Z fields. There remain twelve other fields which 
are related to very weak lepton-quark transitions predicted in this theory. 

But first let us identify the quark flavor in q1, q2, q3. As the 
electromagnetic field must be one of the fields ~ k{x) then the generator u, 
Tk associated to it will be the charge Q which then will also be traceless. 
Applied to the quintu~let (X. 2) the diagonal elements of Q will give : 

hence 

3 Qq + Q = 0 
ec 

Q - 1 
q - - J 

Thus the flavor of the quark q is that of the d-quark 

~R = {X. 2a) 

As we want that Higgs fields generate a mass for d1, d2, d3 and for the electron, 
we shall have to consider besides these right-handed components also left-
handed components for these fields. We must also introduce the u fields which 
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also acquire a mass. Therefore we must consider 15 operators namely 

c c c 
eR' el and vl (or alternatively e R' e L' v R) 

As five of these operators are in the right-handed quintuplet (X. 2a) 
we need a left-handed decuplet to account for the remaining fermi fields. 

With the quintuplet we can construct an irreducible ten-dimensional 
representation of SU(5) obtained by making the antisymmetrized product of 
two quintuplets.Thus if we call 

w = (X. 4) 

then this antisymmetric product will be : 

(X. 5) 

and will have ten independent components. The first three Wa' a = 1, 2, 3 
are a colour triplet, therefore Wab for a, b = 1, 2, 3 represents a 
product of two SU(3) triplets which decompose as(see Kokedee, ref. 51) : 

3 I 3 = 6 + 3 



L 
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and the sextuplet is symmetric and the antitriplet antisymmetric. Thus the 
~ab for a, b = 1, 2, 3 constitute an anti-colour triplet. These also have 

charge - j therefore we may identify them with the anti u-quarks~·we shall 
put : 

a, b = 1, 2, 3 

since the charge conjugate of a right-handed spinor is left-handed ($R) = ($c) 
c L 

where c means charge-conjugate. 

Also if we take ~a4 these will represent a colour triplet with 

charge ~ whereas ~a5 will represent a colour triplet with charge - j . 
Therefore we identify 

a = 1, 2, 3 

a 1, 2, 3 

~45 will be colour-singlet and isospin singlet, therefore as its 
charge is + 1 we identify it with eel 

~45 = e\ 

Hence, besides the quintuplet (X. 2) we postulate the following 
decuplet (left-handed) 

0 UC 
3 

-uc2 ul 

-uc 
3 0 UC 

1 u2 

~L = 1 UC -uc 
ff 2 1 0 U3 

-ul -u2 -U3 0 

-dl -d2 -d3 -ec 0 
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Now with these objects we construct immediately the corresponding 

lagrangean piece which is gauge invariant namely : 

Here the first term contains the generator matrices (Tk>aa' in 
the five-dimensional representation which are the ones given in (X. 3). The 
second term, involving wl contains the generator matrices in the ten­
dimensional representation (Tk)ab;a'b'· Now an infinitesimal gauge transformation 
on the quintuplet (X. 4) is given by : 

therefore this transformation induces the following one on the decuplet (X. 5) 

IP' ab= i) [ 6aa' + i 9o Ak(Tk)aa'] [ &bb' + i 9o Ak(Tk)bb' ] -

- [ 6ba' + i 9o Ak(Tklba'] [6ab' + 1 9o Ak(Tklab'] ~.Pa'b' 
If we compare this with the transformation : 
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we find 

- 1 ~ (\)ab,a'b' - '2" ( 0aa•(\)bb' + 0bb.(\)aa' -

- 6ab' C\lba' - 6ba .(T kl ab' ! 
and 

This then indicates how to operate with the ten-dimensional representation of 
the generators. 

The interaction of the fermion fields with the gauge fields is 
contained in the covariant derivative terms ; it is 

We expect that the fields from k = 1 to k = 8 describe the gluon fields. 

Given the expression of T15 in (X. 3) in the 5-dimensional repre­
sentation we see that 

1 0 0 0 0 

0 1 0 0 0 
( . µ T ~ go ~- µ 0 0 1 0 0 ipR] ~,15 - go WR y 15 1~R) µ, 15= - Uo ipR Y 

0 0 0 -3 0 

0 0 0 0 0 
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Now if we identify the field ~µ,lS with the electromagnetic field 

~ 15 =A µ, µ 

then we should have : 

that is 

so that 

90 e 
- = "! 
216' 

- µ ~ - 9o($R y Tis $R) µ,l = e [~Ryµ 

where ~R is given by (X. 2a}. 

0 

0 

0 

0 

The constant g
0 

is thus determined. 

0 0 0 0 

-1/3 0 0 0 

0 -1/3 0 0 

0 0 1 

0 0 0 

"1R]\ 

The decuplet term will contribute with the left-handed part of the 
current so as to give the correct electromagnetic interaction of the quarks u, 
d and the electron. Given the term corresponding to k = 24 we identify 

~µ,24 with the neutral meson field z . For the sector electron-neutrino 
µ 

this must give a term of the form (VIII. 41) : 
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If we call 

I - 0 T3 3 
TJL = Ly ""'7' L d x 

we have for the neutral charge Tz 

Thus as 

we have that : 

whence 

where 

Q = T3L + ~ 

As the trace is taken over the quintuplet we have (see (X.3)) 
1 

• 2 '2 3 
sin ew = = "S' 

1 + 3 x j 

The value of the Weinberg angle is thus fixed in the region of exact synunetry 
by the condition of grand unification. This value is differen~ from the one 
obtained in the Salam-Weinberg model because in the latter case spontaneous 
symmetry breaking has been introduced and the final effective lagrangean is 
used in determining the value indicated at the end of paragraph VIII. 8. 
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Clearly, in obtaining the value ~ for sin2 ew we should remember that we are 

still in the exact symmetry limit where all constants, like g1, g2 and gs 

are equal to g
0 

and therefore sin2 ew has this limiting value, and this 

happens at very high energies <~ 1015 GeV). 

X. 2 - HIERARCHY OF SPONTANEOUSLY BROKEN SYMMETRIES - LEPTO QUARK BOSONS 

The next step is to try and introduce Higgs fields in order to 
implement spontaneous symmetry breaking procedures which will give rise to masses 
and to the final physical particles and coupling constants. 

Let us first look at the couplings of the twenty-four gauge fields 
with the fermions, for instance with the quintuplet (X. 2). For the transition 
of a d quark from a colour state a to a colour state b we have an interac­
tion with the gluon fields (Fig. X. 1) : 

Figure X. 1 

for a transition between the same colour states we have an additional inter­
action with photons or with z0 bosons (Fig. x. 2) : 



L 
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--
- - - gluon or photon or z0 field 

Figure X. 2 

We also have the usual transitions between lepton states which involve interac­
tions with the W, Z and y fields, namely (Fig. X. 3): 

)--z6~eld 

Figure X. 3 

But the lagrangean also gives rise to a transition from a quark to a lepton 
with interaction with vector fields which one may call Xa(j) and Ya(j), 
namely (Fig. X. 4) : 
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~ 
/ - 'al;) 

Figure X. 4 

that is, an antineutrino may emit a vector field Ya<i> with colour a and 
charge j to give a coloured quark da{with charge - j). And a positron 
may emit a vector field Xa(j) with colour a and charge j to give a quark 
da. These vector fields, required by the unifying SU(S) group, carry colour, 
electric charge as well as leptonic and baryonic number. We still have the 
following possible interactions 

-~~.i) 
a 3 

-r<i) 
a "3" 

etc. 

Figure X. 5 
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These interactions clearly imply instability of the proton since the 

following decays would be possible (note the conservation of B-L i~. the SU(S) 
model although LlB10, Lll#O): 

etc. 

P -+ e + + iro 

p + lJ++Ko 

n + v + 1To 
e 

As we must require that the lifetime of the proton be extremely 
large, we see that the mass of the mesons X and Y must be extremely large. 
Thus, possible diagrams for the proton decay are the following (Fig. X. 6) 

+ 

Figure X. 6 

:>Ff - J<. 
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and it is seen that the Y-meson propagator enters these diagrams, therefore the 
decay rate is expected to be proportional to (f1Y)-4. 

So the Higgs mechanism must give very large masses to the X and Y 
mesons in order to suppress this decay ; these have been estimated to be of 
the order of 1015 GeV -these masses give rise to a proton lifetime of the order 
1031 years. This mechanism then should be carried out in two steps. The first 
step makes a transition from the group SU(S) to the direct product SU(3)c a SU(2) 
~ U(l) and conserves the rank of the group. For this procedure, a set of 24 
Higgs fields is required, which are postulated to have a non-vanishing vacuum 
expectation value. This first spontaneous symmetry breaking gives masses to 
the X and Y mesons but keeps the other twelve fields massless, that is the 
synunetry SU(3)c a SU(2) ~ U(l) is still conserved. 

In a second step, another set of five Higgs fields is introduced 
which will give a mass to the w+, w- and z0 fields. The energies correspon­
ding to the masses of the X and Y mesons are of the order 1015 GeV, those 
for the W, Z mesons, as we know, are of order 100 GeV. 

Let us see briefly how the first step may be carried out. If ~a(x) 

is the set of twenty-four scalar fields, the covariant derivatives applied 
to this set are : 

(Dµ ~)a= (aµ 0aa' + i go ~,k(..J?;)aa•>·~a' 

where now the (~~a' aretwenty-four matrices, 24 x 24, which act on the twenty­
four ~a· 

t 
As ~a transforms like ~ -; w, w being the quintuplet (X. 4), 

we deduce from a comparison between 
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and 

the following reationship between the two representations of T : 

that is 

therefore 

The Higgs fields may be replaced by the 5 x 5 traceless matrices 

24 ta 
<f> = 1: IP 

a=l a T 

so that a term like 

may-represented by : 
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From the commutation relations between the matrices t which 
define the structure constants of the group, f abc : 

[~ 
we deduce that 

The kinetic gauge invariant tenn of the Higgs fields will be 

where 

We see that when we make <f> to acquire a non-vanishing vacuum expectation value 

<OI <P l(b :a 

the mass matrix of the vector fields will be of the type : 

The mass acquired by the vector fields thus depends on the conunutat6r 
between the 5 x 5 matrix o :: < O I <f> I O > and the generators tk · 
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As we want that the gluon fields remain massless we want that 

[ tR., a] = 0 for R. = 1, . • . 8 

This will be ensured if a has the unit matrix as its first 3 x 3 sub­
matrix : 

a = 

since 

1 0 o: 
0 1 o' I 
0 0 11 
-----'-----

I 

I 0 0 
l 

A I 0 0 
j l 0 0 ____ ..J ____ _ 

0 0 0 0 0 

0 0 0 0 0 

j = 1, .•• 8 

Also, as the electromagnetic field was identified as ~µ,lS we require 

for the photon mass to vanish. 

And if also the mass of z0 is zero at this stage of spontaneous 
symmetry breaking then : 
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We conclude that~ must be of the form 

a = µ t15 + " t24 

where µ and " are constants that is 

a 

If we call 

0 

0 _l_+~ 
ro Im 

0 0 

0 0 

0 0 

3µ " --+-=a+B 
./0 Im 

4v --=a-B 
Im 

then we can write : 

_ 2a 
0 

3 
0 _ 2a 

3 

0 

0 

_l_+~ 
n mr 

0 

0 

0 0 

0 0 

2a. a 0 0 -3 0 

0 0 0 a + f3 

0 0 0 0 

0 

0 

0 

-~+~ 
11> Im 

0 

0 

0 

0 

0 

a - B 

0 

0 

0 

0 
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The sub-matrix 

0 

a - s) 
however would imply a mass for the W mesons. As we do not want this to 
happen at this stage we assume 

B 0 

2 2 The masses of the X and Y mesons are then proportional to g
0 

a and 
we postulate this mass to be extremely large 

the vacuum expectation value of the Higgs fields at this stage must be tremendous­
ly large. 

The second step of spontaneous symmetry breaking will be achieved 
with the introduction of five other Higgs fields and will give rise to the 
smaller-masses, 6f the order of 100 GeV, of the W and Z bosons. 

X. 3 - CONCLUDING REMARKS 

We shall not proceed further with the discussion of the SU(SJ model, 
still under study at present and urge the interested reader to consult the 
1 iterature on the subject 163- 172 ). 

As we have seen, in this model, as in all models so far, one assumes 
as fundamental objects a certain number of fermions -quarks and leptons- which 
are grouped, for no known reasons, into families. These objects interact with 
basic gauge vector fields and with Higgs scalar fields, according to the 
prescription of a 11 grand 11 gauge group. This group is SU(S) in the model 
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proposed by Georgi and Glashow ; it is SU(4) « SU(4) in the unifying mooel of 
Pati and Salam (in this model twelve integrally charged quarks, four flavors 
with three colours each, and four leptons are placed in a (4, 4) representation 
of the group SU{4) ~ SU(4)). 

The spontaneous symmetry breaking is carried out as if there existed 
a hierarchy of broken synunetri es. The "grand" group is bror~en down to another 
one by Higgs fields which acquire an extremely large vacuum expectation value 
and give rise to tremendously heavy vector mesons. Then the latter group is 
broken down to a succeeding one with another set of Higgs fields which give 
rise to less heavy vector mesons. 

A prediction of these unifying theories is the instability of the 
proton since they put quarks and leptons in the same multiplet (this is also 
true in the unifying model proposed by the author on 1 epton structure 148). The 
superheavy vector mesons help to suppress this decay. 

As we saw for the case of the SU{5) model, there is an enormous gap 
' between the masses of the X and Y mesons and those of the W and Z 

mesons. Are there no other meson masses in between ? 

Of course, the question of the occurrenceof quarks and leptons into 
families is still unexplained and the total number of supposedly basic 
fermions is now twenty-four {if t quarks exist). The question of a possible 
structure for these basic fermions is now the subject of investigation 148- 184 >. 

There also remains the question of the unification of the strong, elec­
tromagnetic and weak interactions with the gravitational field. Supersymmetry 179-184) 
and supergravity theories which started from the attempt at deeply correlating 
and unifying fermion fields and boson fields, are being developed and point 
out to a possible super unification ofthe forces in nature, bringing into the 
picture gravitons and possibly massless spin - 3/2 particles {Table X.l). 

Such a possibility of spin 3/2 basic particles 162) is also envisaged 
if leptons as well as quarks have a structure. 
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PROBLEMS 

X - 1. Two operators aA, a8 satisfy the following commutation rules with 
their hermitian conjugates : 

[ aA, a\]_= .[a8, a\ ]_ 1 

and the other commutators vanish. 
a) What are the conunutation rules between aA, a8 and the operator number 
of objects N : 

b} If lnA' n8 > is an eigenvecor of N with eigenvalues nA + n8 what are 
the eigenvalues of aAlnA' n8 >, a81nA' n8 >, a+AlnA' n8 >, a+81nA, n8 > ? 

What is the expression of the latter vectors ? 
c) From these expressions obtain the matrix elements of the operator Q in 
the following representation : 

( 

< 1, 0 

< 0, 1 

1, 0 > 

1, 0 > 

< 1, o I n I o, 1 > ) 

< o, 1 I n I o, 1 > 

where n is one of the four possible operators which do not change the total 
+ + + + + + number of objects : a A a8, a 8 aA' a A aA - a 8 a8, a A aA + a 8 a8. 

d) What linear combinationsof these matrices give the usual Pauli matrices 
T 1, T 2 T 3, the generators of SU(2) ? 

X - 2. Apply the method of the preceding problem to determine the fonn of 
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a) the eight generators Ak of the SU(3) group. 

b) The fifteen generators n£ of the SU(4) group. 

c) The twenty-four generators t
1 

of the SU(5) group, as given in (X. 3). 

d) How many diagonal matrices are there among the generators for each of 
these groups ? 

X - 3. Complete the treatment of the SU(5) model. Consult Jarlskog, ref. 165 
Ellis, ref. 166 ; Paul Langacker, Grand unified theories and proton decay, 
SLAC-Pub-2544 (1980). 

X - 4. Whereas the postulate of an SU(2) singlet right-handed neutrino, vR' 
will give rise, by coupling with a Higgs doublet in the Salam-Weinberg theory, 

to a mass term m0 (vL vR + vR vL)' (Called Dirac mass), another mass tenn, 

called Majorana mass, may be introduced by coupling the singlet vR with 
the singlet (vR)c = (vc)L : 

°1M l ( "c) L "R + h • c · l 
•) express the Majorana mass tenn as a function of tvR and the charge con-
jugation matrix C. 

b) Consult P. Langacker, Grand unified theories and proton decay on Dirac 
and Majorana masses. 
c) Read Bilenky and Pontecorvo, ref. 140 ; L.Maiani, Neutrino oscillations, 
CERN preprint-TH-2846 (1980). 

X - 5. Study the SO(lO) model. Consult Langacker, ref. in the preceding 
problem. 





I - 1 

I - 2 

Solutions of Problems 

a) o- 1(1) yµ 0(1) = 1µ yv 

" 
b) The choice of hennitian conjugate of yµ being adopted as 

(yu)+ = Yo Yµ Yo 

one obtains : 

The 26 equations are then : 

det o+ = det o- 1 

Trace o+ = Trace 0-l 

i Trace (D-l yu o ya) = 1U" g'\)(l 

{Trace (D-1 Yu D ~(ya ya _YB ya) YA) = 1uv (gva 9AB _ 9va 9Aa) 

A - a) RY 1" m n "' "' F 1 
UV ( x 1 

) = (de t R.) Fm n ( x) 

b) S'(x') = S(x) 

vu' (x') =tu V"(x) 
" 

Aµ' (x') = {det .e.) iµ A"{x) 
" 

P'{x') = (det R.) P{x). 
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; rll'V µv B - a) D(i) = I - "2" -r- a , infinitesimal 

i E v D(i) =exp (- "2" -t-- allv), finite 

LllV = i [ y ll, y V] 

i = ( i 001 0 ) 

f 01. 

( o o~ oi -0~i) 
= ~ -~ 
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hence D(~) is real in this representation. 

I - 3 

- 4 

Multiply Rarita-Scwinger's equation by yµ to the left, to obtain 

Multiply by the derivative operator a so that 
µ 

2 i (y aa)(a ~µ) + m (y aa}(y ~µ) - 3 m (a $µ) = o 
a µ a µ µ 

These two equations give the Dirac's equation and the subsidiary conditions 
for m ~ O. 

.a<P • a<P 
1 - = - 1 cr 1 - + cr2 m <P 

ax0 ax 

where q> = ~~) is a two component spinor o1 and o2 are Pauli matrices 

The above equation is of the form : 

where : 

H = ax p + a m 

and 

a 

Under the form 

( . a 
1 y aa - m) <P = o 
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we have 

so that 

0 2 2 (y ) = I, (yx) = - I 

and 

Infinitesimal Lorentz transformation 

~·(x') = D(t) ~(x), 
1 01 D = I - ~ a1 e: 

Adjoint equation : 

where : 

Conserved current : 

Left and right-handed components are 

~L 6 ~ (I - a1) ~(x) 
1 

~R = ~ {I + a1) ~{x) 

and satisfy the equations 

[ ; a o + i (a 1 ax> ] <PR = m cr2 <PL 

[ ; a o - i (a 1 ax) ] <PL = m a 2 <PR 
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from which equations with m = O follow. Find the other possible ~olutions. 

I - 5 

I - 6 

I - 8 

a) ( o + m
2

) <P = g ~ tJJ --
1
-'"X' 

(l+K <P)z 

(i ya a - M) l/J = - g _<P~ tJJ 
a l+K <P 

i (a ijj)ya+M ~ = 9 _<P_ ~ a 
l+K \P 

b) T = a <P a <P + ~ [~ y a w - (av ~) Yµ tJJ J + µv µ v ~ µ v 

~1(2 2 a 1- . a ) 
+ 9µv~ "2' m <P - aa <P a <P) + "2° tJ; (-1 y aa + M tJJ + 

c) H = J d3x) ,,2 + (V !/l)
2 + m2 i + I/I+ [- i ~ · V + M S] I/I 

= 9 ~ I/I r (-lJ" K" "'n+l ~ 
n 

H anti-kink ;g m3 
T T 

a) A 1 1 
"'2' ; 3 2 1 

B = "'2' A - A + "2" 

2 C = 3A - 3A + 1 

b) A = B = C = 1. The equation in this case is the one adopted in supergravity 
to describe massless Majorana spin 3/2 fields. 

c) This relationship allows the following fonn for the equation in b) 

Eaµvs ysyll (av + J; Y) 1'1a = o. 
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II - 1 
a) Let o Zµ{s) be arbitrary but vanishing at the limits of integration 

the corresponding o S is then after partial integration : 

which gives, for 0 s = 0 for the above arbitrary 0 zµ 

µ dZ 
2 d dZ _ e a .-aµ ( ( ) ) mo c Os dS - as t . z s ' 

b) Variation of S corresponding to an arbitrary field variation o AlJ(x) 
which vanishes on the boundaries of space-time integrations gives : 

lf 4\1 \) o S 2 = - c d x (~ F µ) x) ( a o Aµ { x) - aµ 0 Av ( x) ) + 

+ e jµ(x) o Aµ(x) ~ = after partial integration = 

" f J d4 
x ) a" Fu" - e ju 16 Au ( x) 

which gives, for o s2 = 0 for the chosen arbitrary o Aµ{x) 

a Fµv = e jµ 
1J 

c) We have : 

~ Tµv = m c2 f dZµ dZv a 4 . l 
0 v m 0 as Cl"S" v o {x - Z(s)) ds = (after part1a 

ax 

integration) = m0 c2 J{ .£s ~;µ ) o4(x - Z(s)) ds 



d) 

II - 2 

a) 
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so that, in view of the particle's equations of motion 

or 

a T µv = e . Fvu 
V m JV 

LAµv = xµ TAV - xv TAU 

Ljk = J Lojk d
3
x = zj pk - zk pj 

VxB-a E=eJ 
0 

vx'E+a B=o 
0 

V• 8 = o 

E+B; 8+-E 

c) Let hµ be the magnetic monopole current. We may postulate 

av FllV = e j\J 

"'1.iv av F = 9 hµ 

Fr-om : 

obtain : 

if 

g' ::: g 



II - 3 
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In a two dimensional Minkowski space there is no magnetic field 

The lagrangean is 

where 

0 1 
y = <12, y = -

Maxwell's equations are 

ax E (x, x o) = e jo (x, x o) 

a0 E (x, x o) = - e jl (x, x o) 

0 - + j (x, x o) = c.p a2 c.p = c.p c.p 

The conservation equation is clearly 

aJ.o "I .1 
+ QJ = 0 

ax0 a;T 

In the absence of matter, E = const. and the energy in each interval 
E 

(- i, i) in constant E2
0 

if E = -f: 
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II - 4 
a} a Aµ - aµ(a Av} = e jµ 

\) 

gives rise, in the Coulomb gauge 

v . A. = o 

to the equations 

a A = e j - v (a Ao} 
0 

o2 Ao .o 
v = - e J 

The Green's function of the latter equation is 

~ (x . -x· > - i i 
' - rn 1-x - -x· 1 

so that 

Ao (x, t) = 4en 

and 

The hamiltonian is : 

after partial integration over a term in E · V A0
• 

b) The decomposition 

into a longitunal and a transverse component of E gives rise to 
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the first tenn on the right-hand side gives the Coulomb energy 

e2 fd3x d3x' jo(x) jo(x') 
81T I-+ -+ I I x - x 

III - 1 

where : 

D =a+ieA µ µ µ 

From the above equation and 

we obtain 

= - i e F µv 

D ct>µ ;;; i e 
µ 2"";Z 

and the second order equation is 

o2 ct>µ + m2 <I>µ + i e Fµv <P - i e f Dµ ~ aa -\) ~ aa 

• Q::? <113 
- 1 e (a F ) y ;;; O 2"";Z µ aa 

where 
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II - 2 

a) Equations are 

1) 

b) the subsidiary conditions, as der1ved from these equations, are 

D ipa 
a 

c) thus : 

2i Iii (Dµ 1'iµ) 

fm l 3 (yµ !Jiv - yv !Jiµ) + i .,µv (ya tJi") l Fµv 

Dq .p" = [ 1 + 3 em2 .,w Fµv ]-1 ( - fm (yµ !Ji" - Yv .Pµ) Fµv) 

The development of the inverse operator in ya ip gives for the current 
a 

jµ = ~a Yµ tJi" - 3 i:2 ! (~a l - ~8 y") .pµ + (~µ y" !Jis - ~µ YB .pa) ! • 
2 

• F _ 1 .;_ (;;,a yf3 _ ;;,f3 Ya) i1 ( .A ,,,n n ,,,).) F F + 
af3 '3" .. 'I' 'I' Y Y "' - Y 'I' a~ ).n • • • 

m 
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III - 3 
a) Basis : C, cr C 

b) 

c) Take the trace then multiply by a and take the trace to find 

v x F = a
0 

F 

d) Choose : 

F = s - i E 

and above equations give the free field Maxwell~ equations. 

e) x ~ -x induces the transformation F ~ F*, so that B ~ B, E ~ - E . 
(see J. Leite Lopes and D. Spehler, Lett. Nuovo Cimento 25, 101 (1979). 

IV - 1 
a) Trace (Tk) = O follows from the corranutation rule. 

b) F 2 I d . · rom T 1 = an Tl T2 = l T3 lt follows that 

hence 



IV - 2 
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c) 

From the commutation and anticommutation rules if follows 

Tr(Ak At) = 2 oki + (dktn + i fkin) Tr(An) 

Tr(At Ak) = 2 oki + (dktn - i fktn) Tr(An) 

hence : 

a) Tr(>.n) = O 

b) Tr(>.k >.t) = 2 okt 

For the case k = 1,2,3 one obtains 

and 

i, k = 1,2,3 

which give : 

c} det Al = det A2 = det x3 = O 

Let xl' x2, x3 be the eigenvalues of a Ak' k = 1,2,3. One has 

det Ak = x1 x2 x3 = O 

Tr (Ak) = xl + X2 + X3 = 0 ' k = 1,2,3. 

So one x vanishes, let it be x3. Then x1 = - x2. Thus A1, >. 2, >.3 
have each zero as an eingenvalue and the other two have opposite sign. 
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If A1 k is a similarity transformed from Ak 

-1 
)..

1 k = S >.k S 

such that : 

then : 

whence : 

d) 1, - 1, O are therefore the three eigenvalues of >. 1, )..2, A3. 

e) If one chooses 

A3. 0 -~ D 
then 

From the commutation rules 

).. 2= ).. 2= ).. 2= ~ I + _!_ A 
1 2 3 J n a 

2 2 1 
A 8 = J I - n As 



so that : 

2 2 4 
"1 + "a = j I 

therefore 

1 
'-s = -

ll 

One has also : 

A4 Aa - Aa A4 = - i ,13" As 

1 ). 
).4 ).8 + ).8 A4 = - - 4 

,13" 

).s '-s - "s ).s = ; /3 '-4 

1 
A5 ).8 + ).8 ).5 = - ~ ).5 

A6 As - AB ).6 = - i lj A7 

1 
).6 ).8 + As ).6 = - ,13" ).6 

).7 "a - '-a "1 = 1 ./! "6 

1 
A7 "s + As A7 = - ~ A7 

,13" 

From 

one deduces : 

Ak = 
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k = 4,5,6,7 



Let 

then 

From : 

al3 = i b13 

a23 = i b23 

A4 A6 + A6 A4 = Al 

A4 A6 - A6 A4 = i A2 

we get : 

so if 

then 

A4 A6 = ~ (Al + ; A2) 

0 

0 

* c 23 

* - 1 al3 c 23 -
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so that 

Similarly one obtains 

'A7 = 
(: 

0 

From 

Al A4 + A4 Al = )..6 

Al A4 - A4 Al = i 'A 7 

there follow the relations 

so 

and 

0 
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0-ia 0 
eia) 
0 , 'A5 = 

0 0 

(: 
0 :i) 0 A7 = 

e-ia 

U-ia 
0 

0 

0 

(: 0 

0 

ieia 

and the choice a = O gives the usual representation. 

. ia) -1e 
0 

0 

~ ia) -1e 

0 



IV - 4 

IV. 5 
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From equation (IV. 14) we obtain : 

a) Then the law (IV. 14) follows from the relationship 

u-1 (x) = c tU(x) c-1 

so that : 

if : 

b) For infinitesimal transfonnations 

a) As ~abc in the form given in the problem is symmetric in be we 

assure its symmetry in ab by multiplying it by the antisyrrmetric 
matrix c-lab which then must vanish : 

-1 1 t + 
C ab tlJ abc = - a • ( T ) ac = O 

so that 

~ • f (x) = O 

in the sense that : 
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b) Finite transformation law : 

where 

Infinitesimal transformation law : 

IV. 7 

v - 1 

Apply the operator 
equation 

ya D + m to the left-hand side of Dirac's 
a 

to obtain 

(i yµ D - m) ~(x) = 0 µ 

( ( a 2 2 Y Da) + m ) ~(x) = O 

so that, in view of the commutation rules for y's and D's 

l Da Da + m
2 

- g ~ • f µv ~ !·.p(x) • 0 

Write this equation in terms of the Dalembertian operator and the field 
Aµa and discuss the significance of each term 

We find 
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From 

g = det(glJ) 

we have 
A}J'V 

glJ" ::: Ll -9-

where ~lJ" is the cofactor of the element g so that 
)JV 

g 

from these relations the required formula is deduced. 

v - 2 
a) 1 

RlJ" = K (TlJV - "2' glJV T) 

v - 3 

b) for a Yang-Mills field the trace of its energy momentum tensor vanishes 
as is the case of the energy-momentum tensor for an electromagnetic 
field TYM = 0 so that : 

R K TYM 
}JV }JV 

As L(zlJ dzµ) 1·s the lagrangean ' ds 

o f L ds = O 



v - 4 

GFT - Z 
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then Lagrange's equations give : 

dz6 
rs = o 

with 

The force on the particle is such that : 

2 d2zµ 2 µ dza dzB 
mi c -:--r = - m c r B -:r:-- ~s ds g a as as 

with mi = mg, mi is the inertial mass, mg the gravitational mass. The 

2 µ dza dza 
gravitational force on the particle is - mg c r aa as- as- . 

In two-dimensional space there is only one independent component of the 

Riemann tensor RaµSv(x) ; R1010(x), since it is antisynunetric in aµ and 
in av. 

Now 

R = gas R 
µv aµSv 

so that : 

R - 911 R 00 - 1010 

ROI = - glO RlOlO 

However if g = det(gµv> = g00 g11 - (g01 )2 we have 

11 - 900 . 901 901 
g -9· =--g-
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so 

R = g (x) F(x) µv µv 

where : 

F(x) 

Therefore : 

R = gµ" R = 2 F 
µ'V 

and 

VI - 1 

From 

R l R:: 0 µv - ~ 9µv 

i oµv 

IP' (a + R. x) = D(R.) 1Hx), D(R.) = e- "2' e:ll" Z 

we have for infinitesimal 

(I+~ e:µv Jµ")(I - i aµ Pµ) $(x')(I + i aµ Pµ) • 

i aa) i aµ" 
• {I - "2" e:aa J = (I - ~ e:ll" --r> 1P (x) 

and as 

"'(x') ="'(a+ x + e: x) = ip(x) +aµ a ip + e:~ a"~ 
µ " 

the required equations follow. 

VI - 2 

As the charge operator is the generator of U(a), we have for infinitesi­
mal a : 

U(a) = I + i e a Q 
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hence : 

(I - i e a Q) ~(x) (I + i e Q} = (I + i ea} ~(x) 

therefore : 

[ ~ (x), Q J = e IP-(x} 

VI - 3 

a) ~ = { d il i Ya aa 1L + il i Ya aa 1R - mt (il 1R + iR 1L) + 

b) 

hence 

1 5 1 5 5 1 5 
"2" ( 1 - y } "1 + "2" ( 1 - y } ( - y "1> = 2 ( 1 - y } "1 
- 1 5 - 1 5 ".e. "2' ( 1 + y ) + "1 "2' ( 1 + y ) 

c) Verify. 

d} 



VI - 4 
a) 

N f .o d3 
b) JI. = J {R.) x 

where : 
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0 

·A - .A ii .A n + - YA v 
J {R.} = R,L y R,L + NR y NR "t JI. 

c} No 

R, = e,µ,T 

d) !£' _ r ) l [ [ i ya a L + R i ya a Rn ) + h • c · + 
- ~ R, aR. R, aN 

R, 

~F 
+ --

./'l 

with 

1( . ) coool) T+ = °2' Tl+ 1 T2 = 

The currents are indicated in the tenns in e AA and 
~F 
./'l 
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e) Electromagnetic global gauge transfonnation : 

( ~1)L - C::~ 1J ~exp (;ea~ h 

Noether Current : 

Leptonic global gauge transformation 

Le -+ eial Le 

L -+ eia2 L µ µ 

L -+ eia3 
LT T 

as given in a) and b). 

f) 
·A - A Ta 
J a I: LR. y T LR. 

R. 

·A 2 ( ·A • ·A ) 
J (w) :: J1+ 1 J2 

VI - 5 
a) From 

(AD, BC] _ (A, B ] + C D - B (A, C] + D + A ( D, B] + C - A B ( D, C] + 
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we find : 

[ + J I 3 [- s - s J Q(w)(t), Q (w)(t) = 2 d xi v1(1 - y ) v1 - i (1 - y ) i 

c) KL = 1 (K - KS ) a "Z a a 

where 

l/l!l (x) = c1(x)) 
t(x) 

KR = 1 (K + K5 ) a "2" a a 

then 

[Ka' Kb J = i £abc Kc 

[Ka' Ks b] = i 5 
£abc K c 

hence 

[ KRa' K\] = i R 
e:abc K c 
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a, b = 1,2,3 

which define the SU(2) a SU(2) algebra. 

d) As the total lepton number is 

N = f d3
x i ~+1 (x) ~1 (x) = 

= f d
3
x i )"\(x) "1 (x) + !+(x) !(x) j 

and the charge is : 

then 

I 
3 1 - T3 

Q(y) = - d x i ~+1 (x) --z--- ~1 (x) 

= - f d3x i !+(x) !(x) 

1 
Q(y) = K3 - "Z N 

As the total lepton number conunutes with all the operators, then 

[ Q ( y) , K+] = K + 

[ Q (y), K_] = - K_ 

[ Q ( y) , K3] = 0 



VI - 6 
a) 

- 392 -

-+ 
* c;p 2 0 .o 
v • <O(v) + m v 4> = J 

-+ 

V x B(v)- ao ~(v) + m2v l = j 

v · s(v) = o 

-+ 

v x g(v) + a0 B(v) = o 

the coupling constant is incorporated in the current. 

b) * * 2 0 0 v • ., (a) + m a a = p 

-+ 

v x Wca) - ao it(a) + m2 a ; = P 
-+ 

V • ~a) = O 

-+ 

v x B(a) + a0 Wca) = o 

-+ 

c) v . ~w) + m2 wo = jo _ Po 

+ 
± * CR 2,,.., -. + 
v x "(w) - a0 (CJ (w) + m w = J - p 

+ 

v x ~w) + a0 B(w) = o 
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where 

& _fi. -8 8 -8 _CP 
~(w) - (v) (a)• (w) - (v) ~(a) 

VII - 1 

1 • 2 L = "2' m (x) - U(x) 

1 2 2 A 4 U(x) = "2' m w x + 1' x 

a u 2 2 
~ = x(m w + A n ) = 0 

x = ± a :: ± 

For x' = x - a 

where 2 1 2 
w =-"2'a <O 

VI II - 1 

For instance : 
~ 

(1 - i A . T) L (1 + i A . T) (1 + i A • ;> L 

leads to : 
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.,?= - 1 FlJV F 
1J' lJV ; a 

uv v lJ µ A" Aµ Av F a = a A a - a a + g e:abc b c 

a) Equations of motion 

or 

D Fµvb = 0 v;ab 

Also : 

The equations of motion are those which have time-derivative of 
fields 

a
0 

Fjo + a Fjk + g e: Fjn A = 0 
a k a abc b n; c 

where 

The remaining equations are constraint relations on the field 
variables : 

~ Fok ok 
0 k a + 9 e:abc F b Ak; c = O 
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and 

jk - k j j k 
F a - aj A - ak A + g £abc A b A c 

In tenns of the electric-like and magnetic-like fields we have 

£k = - ak 1f - ao Ak + g (1f x Ak) 

ak fk + g (Ak x [k) = o 

-+ . k -+k -+ • -+ • -+k 
FJ = aj A - ak AJ + g (AJ x A ) 

ak Fjk - a
0 

Ej + g(Ak x Fjk) = o 

b) The canonical momenta are 

and the same result as in electrodynamics that n° = O is found. a 

H = f d3x { l [k 2 + jjk 2 ! 
The commutators are : 

The current in gauge theories 

a Fl..1" = g jll v a a 
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is in the SU(2) case : 

•lJ - - lJ Ta - lJV 
J a - 1" Y T 1" e:abc F b Av; c 

The corresponding charges are : 

Qa = Jd3x joa(x) = Jd3x )w+(x) ~ W(x) + Eabc nkb(x) Akc(x)I 

From the conunutation rules 

it follows that 

j y\J ( i aµ - e Aµ) - m ! ·~ = o 

gives rise to the equation for ~ : 

(i a + e A ) ~ yll + m ~ = o 
lJ lJ 

which, compared with : 

\ yll (i aµ + e Aµ) - m \ we = o 

gives the relations. 

As 
<6'-1 Q ~= - Q 

then 
Gt? -1 iaQ a? -1 -iaQ 
v e v = e 
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a) 
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t . + 5 
~ u(p, s) = r u(p, s) 

IPI 

l . + 5 
~ v(p, s) = y v {p, s) 

IPI 

b) if 

r1i1p u(p, s) = s u(p, s) 

then : 

r1i1p v(p, s) = - s v (p, s) 

s = ± 1. 

Then : 

~-
5 i f ..... 

u (p, s) = ~ (I - £..:...£ ) u (p, s) = 
c. 1-Pl 

1 
= "2" {l - s) u (p, s) = ul(p) 

where 

1 - y5 i ---z--- v (p, s) = "2" ( 1 + s) v {p, s) = vR{p) 

where 
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c) From the Fourier development of ~ one obtains : 

+ b+ (p, l) vR (p) eipx l 
d) 

Let us define the transformed spinor's ~· and we' by the equations 

Now we can write the identities 

where 

1 
~ = :l'l. (M + N), 

c 1 W = - (M - N) 
./'/. 

M = .l_ ($ + $c) = Mc 
l'l 

N = .l_ ($ - $c) = - Ne 
l'l. 
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a) 
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Therefore 

,,,c, M N 
"' = R- L 

For a left handed $'L we have thus 

As $' obeys the same equal time anticonunutation rules as $ there 
exists a unitary transformation between $ and $' : 

hence : 

One obtains also for the lagrangeans 

u-1 Y[$L] u = YcML) 

A state with a left-handed Dirac neutrino is equivalent to a state 
with a left-handed Majorana neutrino. In the Majorana representation, 
a Majorana neutrino, self-charge conjugate spinor, can be taken as 
a real spinor. But a left-handed Majorana neutrino is not real and 
its charge conjugate is a right-handed Majorana neutrino. 

( a A, N ] = a A, ( a8 , N ] = a8 
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b) aA nA, nB > mp: "A - l, "B > 

aB "A' "B > ms nA' "B - l > 

+ ./nA + 1 a B "A' "B > = "A + l, "a > 

+ 
a B "A' "a > = ln8 + 1 "A' "B + l > 

c. d) -r + = a+ A a8 = ( g ~ ) 

- + (0100) T_ = a 8 aA = 

T 3 : a+ A a A - a+ B aB = ( ~ - ~ ) 

whence 

b) For su4 let the four objects be demoted u, d, s, c. Find for the 
nk generators ~ : 

. ( + + ) n2= - , a ad- a a = u d u 

c 
c 

"1 

0 0 

0 0 

D 
D 
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. ( + + n5= - 1 a a - a a ) u s s u 

n-1(+ + + s- ll a u au +a d ad - 2 a s as) 

,,FT - AA 
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+ + 
n9 = a u ac + a c au = 

. ( + + n10= -1 a a - a a ) = u c c u 
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7\k 
where the -z- 's are the generators of the SU(3) group.·Find 

the latter and those of SU(S). 

The baryon number is : 

1 + + + + B = ~ (a a + a d ad + a a + a a ) 
J u u s s c c 

=! U l l D 
and one has for the charm C 

for the hypercharge Y 

1 2 
Y = ll ns - J c 

and for the charge Q 

1 1 Q = 1 n3 + "2' (Y + 2 C) 

d) For SU(2) one diagonal matrix, T3 ; for SU(3), two diagonal 
matrices, A3, As for SU(4), three, n3, n8, n15 ; for SU(S), four, 

t3, t 8, t 15 , t 24 ; study the general properties of SU(n). 
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Our job in physics is to see things simply, to understand a great many 
complicated phenomena in a unified way, in terms of a few simple princi­
ples. At times, our efforts are illuminated by a brilliant experiment, such as 
the 1973 discovery of neutral current neutrino reactions. But even in the 
dark times between experimental breakthroughs, there always continues a 
steady evolution of theoretical ideas, leading almost imperceptibly to 
changes in previous beliefs. In this talk, I want to discuss the development 
of two lines of thought in theoretical physics. One of them is the slow 
growth in our understanding of symmetry, and in particular, broken or 
hidden symmetry. The other is the old struggle to come to terms with the 
infinities in quantum field theories. To a remarkable degree, our present 
detailed theories of elementary particle interactions can be understood 
deductively, as consequences of symmetry principles and of a principle of 
renormalizability which is invoked to deal with the infinities. I will also 
briefly describe how the convergence of these lines of thought led to my 
own work on the unification of weak and electromagnetic interactions. For 
the most part, my talk will center on my own gradual education in these 
matters, because that is one subject on which I can speak with some 
confidence. With rather less confidence, I will also try to look ahead, and 
suggest what role these lines of thought may play in the physics of the 
future. 

Symmetry principles made their appearance in twentieth century phys­
ics in 1905 with Einstein's identification of the invariance group of space 
and time. With this as a precedent, symmetries took on a character in 
physicists' minds as a priori principles of universal validity, expressions of 
the simplicity of nature at its deepest level. So it was painfully difficult in 
the l 930's to realize that there are internal symmetries, such as isospin 
conservation, [I] having nothing to do with space and time, symmetries 
which are far from self-evident, and that only govern what are now called 
the strong interactions. The l 950's saw the discovery of another internal 
symmetry - the conservation of strangeness [2] - which is not obeyed by 
the weak interactions, and even one of the supposedly sacred symmetries 
of space-time - parity - was also found to be violated by weak interactions. 
(3] Instead of moving toward unity, physicists were learning that different 
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interactions are apparently governed by quite different symmetries. Mat­
ters became yet more confusing with the recognition in the early I 960's of 
a symmetry group - the "eightfold way" - which is not even an exact 
symmetry of the strong interactions. [ 4] 

These are all "global" symmetries, for which the symmetry transforma­
tions do not depend on position in space and time. It had been recognized 
[5] in the I 920's that quantum electrodynamics has another symmetry of a 
far more powerful kind, a "local" symmetry under transformations in 
which the electron field suffers a phase change that can vary freely from 
point to point in space-time, and the electromagnetic vector potential 
undergoes a corresponding gauge transformation. Today this would be 
called a U (I) gauge symmetry, beacause a simple phase change can be 
thought of as multiplication by a I x I unitary matrix. The extension to 
more complicated groups was made by Yang and Mills [6) in I 954 in a 
seminal paper in which they showed how to construct an SU (2) gauge 
theory of strong interactions. (The name "SU (2)" means that the group of 
symmetry transformations consists of 2 x 2 unitary matrices that are 
"special," in that they have determinant unity). But here again it seemed 
that the symmetry if real at all would have to be approximate, because at 
least on a naive level gauge invariance requires that vector bosons like the 
photon would have to be massless, and it seemed obvious that the strong 
interactions are not mediated by massless particles. The old question 
remained: if symmetry principles are an expression of the simplicity of 
nature at its deepest level, then how can there be such a thing as an 
approximate symmetry? Is nature only approximately simple? 

Some time in I 960 or early I 961, I learned of an idea which had 
originated earlier in solid state physics and had been brought into particle 
physics by those like Heisenberg, Nambu, and Goldstone, who had worked 
in both areas. It was the idea of "broken symmetry," that the Hamiltonian 
and commutation relations of a quantum theory could possess an exact 
symmetry, and that the physical states might nevertheless not provide neat 
representations of the symmetry. In particular, a symmetry of the Hamil­
tonian might turn out to be not a symmetry of the vacuum. 

As theorists sometimes do, I fell in love with this idea. But as often 
happens with love affairs, at first I was rather confused about its implica­
tions. I thought (as turned out, wrongly) that the approximate symmetries 
- parity, isospin, strangeness, the eight-fold way - might really be exact a 
priori symmetry principles, and that the observed violations of these sym­
metries might somehow be brought about by spontaneous symmetry 
breaking. It was therefore rather disturbing for me to hear of a result of 
Goldstone, [7] that in at least one simple case the spontaneous breakdown 
of a continuous symmetry like isospin would necessarily entail the exis­
tence of a massless spin zero particle - what would today be called a 
"Goldstone boson." It seemed obvious that there could not exist any new 
type of massless particle of this sort which would not already have been 
discovered. 
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I had long discussions of this problems with Goldstone at Madison in the 
summer of 1961, and then with Salam while I was his guest at Imperial 
College in 1961-62. The three of us soon were able to show that Gold­
stone bosons must in fact occur whenever a symmetry like isospin or 
strangeness is spontaneously broken, and that their masses then remain 
zero to all orders of perturbation theory. I remember being so discouraged 
by these zero masses that when we wrote our joint paper on the subject, [8] 
I added an epigraph to the paper to underscore the futility of supposing 
that anything could be explained in terms of a non-invariant vacuum state: 
it was Lear's retort to Cordelia, "Nothing will come of nothing: speak 
again." Of course, The Physical Review protected the purity of the physics 
literature, and removed the quote. Considering the future of the non­
invariant vacuum in theoretical physics, it was just as well. 

There was actually an exception to this proof, pointed out soon after­
wards by Higgs, Kibble, and others. [9] They showed that if the broken 
sy~metry is a local, gauge symmetry, like electromagnetic gauge in­
variance, then although the Goldstone bosons exist formally, and are in 
some sense real, they can be eliminated by a gauge transformation, so that 
they do not appear as physical particles. The missing Goldstone bosons 
appe_ar instead as helicity zero states of the vector particles, which thereby 
acqmre a mass. 

I think that at the time physicists who heard about this exception gener­
ally regarded it as a technicality. This may have been because of a new 
development in theoretical physics which suddenly seemed to change the 
role of Goldstone bosons from that of unwanted intruders to that of 
welcome friends. 

I_n 1964 Adler and Weisberger [I OJ independently derived sum rules 
which gave the ratio gA/gv of axial-vector to vector coupling constants in 
bet~ decay in terms of pion-nucleon cross sections. One way of looking at 
their calculation, (perhaps the most common way at the time) was as an 
analogue to the old dipole sum rule in atomic physics: a complete set of 
hadronic states is inserted in the commutation relations of the axial vector 
currents. This is the approach memorialized in the name of "current 
algebra." [I I] But there was another way of looking at the Adler-Weis­
berger sum rule. One could suppose that the strong interactions have an 
approximate symmetry, based on the group SU(2) x SU(2), and that this 
symmetry is spontaneously broken, giving rise among other things to the 
nucleon masses. The pion is then identified as (approximately) a Gold­
stone boson, with small non-zero mass, an idea that goes back to Nambu. 
[ 12] Although the SU (2) x SU (2) symmetry is spontaneously broken, it still 
has a great deal of predictive power, but its predictions take the form of 
approximate formulas, which give the matrix elements for low energy 
pionic reactions. In this approach, the Adler-Weisberger sum rule is ob­
tained by using the predicted pion nucleon scattering lengths in conjunc­
tion with a well-known sum rule [ 13], which years earlier had been derived 
from the dispersion relations for pion-nucleon scattering. 
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In these calculations one is really using not only the fact that the strong 
interactions have a spontaneously broken approximate SU(2) x SU(2) sym­
metry, but also that the currents of this symmetry group are, up to an 
overall constant, to be identified with the vector and axial \'ector currents 
of beta decay. (With this assumption gA/gv gets into the picture through 
the Goldberger-Treiman relation, [ 14] which gives gA/g\· in terms of the 
pion decay constant and the pion nucleon coupling.) Here, in this relation 
between the currents of the symmetries of the strong interactions and the 
physical currents of beta decay, there was a tantalizing hint of a deep 
connection between the weak interactions and the strong interactions. But 
this connection was not really understood for almost a decade. 

I spent the years 1965-67 happily developing the implications of spon­
taneous symmetry breaking for the strong interactions. [I 5] It was this 
work that led to my I 967 paper on weak and electromagnetic unification. 
But before I come to that I have to go back in history and pick up one 
other line of though, having to do with the problem of infinities in 
quantum field theory. 

I believe that it was Oppenheimer and Waller in I 930 [ 16] who indepen­
dently first noted that quantum field theory when pushed beyond the 
lowest approximation yields ultraviolet divergent results for radiative self 
energies. Professor Waller told me last night that when he described this 
result to Pauli, Pauli did not believe it. It must have seemed that these 
infinities would be a disaster for the quantum field theory that had just 
been developed by Heisenberg and Pauli in l 929-30. And indeed, these 
infinites did lead to a sense of discouragement about quantum field the­
ory, and many attempts were made in the I 930's and early I 940's to find 
alternatives. The problem was solved (at least for quantum electrodynam­
ics) after the war, by Feynman, Schwinger, and Tomonaga [ 17] and Dyson 
[ 19]. It was found that all infinities disappear if one identifies the observed 
finite values of the electron mass and charge, not with the parameters m 
and e appearing in the Lagrangian, but with the electron mass and charge 
that are calculated from m and e, when one takes into account the fact that 
the electron and photon are always surrounded with clouds of virtual 
photons and electron-positron pairs [ 18]. Suddenly all sorts of calculations 
became possible, and gave results in spectacular agreement with experi­
ment. 

But even after this success, opinions differed as to the significance of the 
ultraviolet divergences in quantum field theory. Many thought-and some 
still do think-that what had been done was just to sweep the real problems 
under the rug. And it soon became clear that there was only a limited class 
of so-called "renormalizable" theories in which the infinities could be 
eliminated by absorbing them into a redefinition, or a "renormalization," 
of a finite number of physical parameters. (Roughly speaking, in renorma­
lizable theories no coupling constants can have the dimensions of negative 
powers of mass. But every time we add a field or a space-time derivative to 
an interaction, we reduce the dimensionality of the associated coupling 



409 

constant. So only a few simple types of interaction can be renormalizable.) 
In particular. the existing Fermi theory of weak interactions clearly was 
not renormalizable. (The Fermi coupling constant has the di!11ensions of 
[massJ-2

.) The sense of discouragement about quantum field theory per­
sisted into the l 950's and I 960's. 

I learned about renormalization theory as a graduate student, mostly by 
reading Dyson 's papers. [I 9] From the beginning it seemed to me to be a 
wonderful thing that very few quantum field theories are renormalizable. 
Limitations of this son are, after all, what we most want, not mathematical 
methods which can make sense of an infinite variety of physically irrele­
vant theories, but methods which carry constraints, because these con­
straints may point the way toward the one true theory. In particular, I was 
impressed by the fact that quantum electrodynamics could in a sense be 
derived from symmetry principles and the constraints of renormalizability; 
the only Lorentz invariant and gauge invariant renormalizable Lagrangian 
for photons and electrons is precisely the orginal Dirac Lagrangian of 
QED. Of course, that is not the way Dirac came to his theory. He had the 
benefit of the information gleaned in centuries of experimentation on 
electromagnetism, and in order to fix the final form of his theory he relied 
on ideas of simplicity (specifically, on what is sometimes called minimal 
electromagnetic coupling). But we have to look ahead, to try to make 
theories of phenomena which have not been so well studied experimental­
ly, and we may not be able to trust purely formal ideas of simplicity. I 
thought that renormalizability might be the key criterion, which also in a 
more general context would impose a precise kind of simplicity on our 
theories and help us to pick out the one true physical theory out of the 
infinite variety of conceivable quantum field theories. As I will explain 
later• I would say this a bit differently today, but I am more convinced than 
ever that the use of renormalizability as a constraint on our theories of the 
observed interactions is a good strategy. Filled with enthusiasm for renor­
malization theory, I wrote my Ph.D. thesis under Sam Treiman in 1957 on 
the use of a limited version of renormalizability to set constraints on the 
weak interactions, (20] and a little later I worked out a rather tough little 
theorem [21] which completed the proof by Dyson [ 19] and Salam (22] that 
ultraviolet divergences really do cancel out to all orders in nominally 
renormalizable theories. But none of this seemed to help with the impor­
tant problem, of how to make a renormalizable theory of weak interac­
tions. 

Now, back to 1967. I had been considering the implications of the 
broken SU(2) X SU(2) symmetry of the strong interactions, and I thought 
of trying out the idea that perhaps the SU(2) x SU(2) symmetry was a 
"local," not merely a "global," symmetry. That is, the strong interactions 
might be described by something like a Yang-Mills theory, but in addition 
to the vector e mesons of the Yang-Mills theory, there would also be axial 
vector AI mesons. To give the e meson a mass, it was necessary to insert a 
common (} and A 1 mass term in the Lagrangian, and the spontaneous 
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breakdown of the SU (2) x SU (2) symmetry would then split the (} and A I 
by something like the Higgs mechanism, but since the theory would not be 
gauge invariant the pions would remain as physical Goldstone bosons. 
This theory gave an intriguing result, that the A 1 /(} mass ratio should be 
V2, and in trying to understand this result without relying on perturbation 
theory, I discovered certain sum rules, the .. spectral function sum rules," 
[23] which turned out to have variety of other uses. But the SU (2) x SU (2) 
theory was not gauge invariant, and hence it could not be renormalizable, 
[24] so I was not too enthusiastic about it. [25] Of course, if I did not insert 
the (}-A I mass term in the Lagrangian, then the theory would be gauge 
invariant and renormalizable, and the A 1 would be massive. But then 
there would be no pions and the (} mesons would be massless, in obvious 
contradiction (to say the least) with observation. 

At some point in the fall of I 967, I think while driving to my office at 
M.l.T., it occurred to me that I had been applying the right ideas to the 
wrong problem. It is not the (} mesons that is massless: it is the photon. 
And its partner is not the A 1, but the massive intermediate boson, which 
since the time of Yukawa had been suspected to be the mediator of the 
weak interactions. The weak and electromagnetic interactions could then 
be described [26] in a unified way in terms of an exact but spontaneously 
broken gauge symmetry. [Of course, not necessarily SU(2) x SU(2)]. And 
this theory would be renormalizable like quantum electrodynamics be­
cause it is gauge invariant like quantum electrodynamics. 

It was not difficult to develop a concrete model which embodied these 
ideas. I had little confidence then in my understanding of strong interac­
tions, so I decided to concentrate on leptons. There are two left-handed 
electron-type leptons, the VeL and eL, and one right-handed electron-type 
lepton, the eR, so I started with the group U(2) x U(l): all unitary 2 x 2 
matrices acting on the left-handed e-type leptons, together with all unitary 
I X I matrices acting on the right-handed e-type lepton. Breaking up U(2) 
into unimodular transformations and phase transformations, one could 
say that the group was SU(2) x U(l) x U(l). But then one of the U(l)'s 
could be identified with ordinary lepton number, and since lepton number 
appears to be conserved and there is no massless vector particle coupled to 
it, I decided to exclude it from the group. This left the four-parameter 
group SU(2) x U(l). The spontaneous breakdown of SU(2) x U(I) to the 
U (I) of ordinary electromagnetic gauge invariance would give masses to 
three of the four vector gauge bosons: the charged bosons w±, and a 
neutral boson that I called the zo. The fourth boson would automatically 
remain massless, and could be identified as the photon. Knowing the 
strength of the ordinary charged current weak interactions like beta decay 
which are mediated by w±, the mass of the w± was then determined as 
about 40 GeV /sine, where e is the y-Z0 mixing angle. 

To go further, one had to make some hypothesis about the mechanism 
for the breakdown of SU (2) x U (I). The only kind of field in a renormali­
zable SU (2) x U (I) theory whose vacuum expectation values could give the 
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electron a mass is a spin zero SU (2) doublet (<1>+, c1>0 ), so for simplicity I 
assumed that these were the only scalar fields in the theory. The mass of 
the zo was then determined as about 80 Ge V /sin 2e. This fixed the 
strength of the neutral current weak interactions. Indeed, just as in QED, 
once one decides on the menu of fields in the theory all details of the 
theory are completely determined by symmetry principles and renormal­
izability, with just a few free parameters: the lepton charge and masses, the 
Fermi coupling constant of beta decay, the mixing angle e, and the mass of 
the scalar particle. (It was of crucial importance to impose the constraint of 
renormalizability; otherwise weak interactions would receive contributions 
from SU(2)X U(l)-invariant four-fermion couplings as well as from vector 
boson exchange, and the theory would lose most of its predictive power.) 
The naturalness of the whole theory is well demonstrated by the fact that 
much the same theory was independently developed [27] by Salam in 
1968. 

The next question now was renormalizability. The Feynman rules for 
Yang-Mills theories with unbroken gauge symmetries had been worked 
out [28] by de Witt, Faddeev and Popov and others, and it was known that 
such theories are renormalizable. But in 1967 I did not know how to prove 
that this renormalizability was not spoiled by the spontaneous symmetry 
breaking. I worked on the problem on and off for several years, partly in 
collaboration with students, [29] but I made little progress. With hindsight, 
my main difficulty was that in quantizing the vector fields I adopted a 
gauge now known as the unitarity gauge [30]: this gauge has several 
won.derful advantages, it exhibits the true particle spectrum of the theory, 
but .•t has the disadvantage of making renormalizability totally obscure. 

Fmally, in 1971 't Hooft (31] showed in a beautiful paper how the 
problem could be solved. He invented a gauge, like the "Feynman gauge" 
in QED, in which the Feynman rules manifestly lead to only a finite 
number of types of ultraviolet divergence. It was also necessary to show 
that these infinities satisfied essentially the same constraints as the Lagran­
gian itself, so that they could be absorbed into a redefinition of the 
parameters of the theory. (This was plausible, but not easy to prove, 
because a gauge invariant theory can be quantized only after one has 
picked a specific gauge, so it is not obvious that the ultraviolet divergences 
satisf Y the same gauge invariance constraints as the Lagrangian itself.) The 
proof was subsequently completed [32] by Lee and Zinn-Justin and by 't 
Hooft and Veltman. More recently, Becchi, Rouet and Stora [33] have 
invented an ingenious method for carrying out this sort of proof, by using 
a global supersymmetry of gauge theories which is preserved even when 
we choose a specific gauge. 

I have to admit that when I first saw 't Hooft's paper in 1971, I was not 
convinced that he had found the way to prove renormalizability. The 
trouble was not with 't Hooft, but with me: I was simply not familiar 
enough with the path integral formalism on which 't Hooft's work was 
based, and I wanted to see a derivation of the Feynman rules in 't Hooft's 



412 

gauge from canonical quantization. That was soon supplied (for a limited 
class of gauge theories) by a paper of Ben Lee, [34] and after Lee's paper I 
was ready to regard the renormalizability of the unified theory as essential-

ly proved. 
By this time, many theoretical physicists were becoming convinced of the 

general approach that Salam and I had adopted: that is, the weak and 
electromagnetic interactions are governed by some group of exact local 
gauge symmetries; this group is spontaneously broken to U ( 1 ), giving mass 
to all the vector bosons except the photon; and the theory is renormaliza­
ble. What was not so clear was that our specific simple model was the one 
chosen by nature. That, of course, was a matter for experiment to decide. 

It was obvious even back in 1967 that the best way to test the theory 
would be by searching for neutral current weak interactions, mediated by 
the neutral intermediate vector boson, the Z0 • Of course, the possibility of 
neutral currents was nothing new. There had been speculations [35] about 
possible neutral currents as far back as 1937 by Gammv and Teller, 
Kemmer, and Wentzel, and again in 1958 by Bludman and Leite-Lopes. 
Attempts at a unified weak and electromagnetic theory had been made 
[36] by Glashow and Salam and Ward in the early l 960's, and these had 
neutral currents with many of the features that Salam and I encountered 
in developing the 1967-68-theory. But since one of the predictions of our 
theory was a value for the mass of the zo, it made a definite prediction of 
the strength of the neutral currents. More important, now we had a 
comprehensive quantum field theory of the weak and electromagnetic 
interactions that was physically and mathematically satisfactory in the same 
sense as was quantum electrodynamics-a theory that treated photons and 
intermediate vector bosons on the same footing, that was based on an exact 
symmetry principle, and that allowed one to carry calculations to any 
desired degree of accuracy. To test this theory, it had now become urgent 
to settle the question of the existence of the neutral currents. 

Late in 1971, I carried out a study of the experimental possibilites. [37] 
The results were striking. Previous experiments had set upper bounds on 
the rates of neutral current processes which were rather low, and many 
people had received the impression that neutral currents were pretty well 
ruled out, but I found that in fact the 1967-68 theory predicted quite low 
rates, low enough in fact to have escaped clear detection up to that time. 
For instance, experiments [38] a few years earlier had found an upper 
bound of 0.12 ± 0.06 on the ratio of a neutral current process, the elastic 
scattering of muon neutrinos by protons, to the corresponding charged 
current process, in which a muon is produced. I found a predicted ratio of 
0.15 to 0.25, depending on the value of the zo -y mixing angle (}. So there 
was every reason to look a little harder. 

As everyone knows, neutral currents were finally discovered [39] in 
1973. There followed years of careful experimental study on the detailed 
properties of the neutral currents. It would take me too far from my 
su~ject to survey these experiments, [ 40] so I will just say that they have 
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confirmed the I 967 -68 theory with steadily improving precision for neu­
trino-nucleon and neutrino-electron neutral current reactions, and since 
the remarkable SLAC-Yale experiment [ 4 I] last year, for the electron­
nucleon neutral current as well. 

This is all very nice. But I must say that I would not hal'e been too 
disturbed if it had turned out that the correct theory was based on some 
other spontaneously broken gauge group. with very different neutral 
currents. One possibility was a clever SU (2) theory proposed in 1972 by 
Georgi and Glashow, [ 42] which has no neutral currents at all. The impor­
tant thing to me was the idea of an exact spontaneously broken gauge 
symmetry, which connects the weak and electromagnetic interactions, and 
allows these interactions to be renormalizable. Of this I was convinced, if 
only because it fitted my conception of the way that nature ought to be. 

There were two other relevant theoretical developments in the early 
I 970's, before the discovery of neutral currents, that I must mention here. 
One is the important work of Glashow, Iliopoulos, and Maiani on the 
charmed quark. [ 43] Their work provided a solution to what otherwise 
would have been a serious problem, that of neutral strangeness changing 
currents. I leave this topic for Professor Glashow's talk. The other theoreti­
cal development has to do specifically with the strong interactions, but it 
will take us back to one of the themes of my talk, the theme of symmetry. 

In 1973, Politzer and Gross and Wilczek discovered [ 44] a remarkable 
property of Yang- Mills theories which they called "asymptotic freedom" 
- the effective coupling constant [ 45] decreases to zero as the characteris­
tic energy of a process goes to infinity. It seemed that this might explain 
the experimental fact that the nucleon behaves in high energy deep inelas­
tic electron scattering as if it consists of essentially free quarks. [ 46] But 
there was a problem. In order to give masses to the vector bosons in a 
gauge theory of strong interactions one would want to include strongly 
interacting scalar fields, and these would generally destroy asymptotic 
freedom. Another difficulty, one that particularly bothered me, was that in 
a unified theory of weak and electromagnetic interactions the fundamen­
tal weak coupling is of the same order as the electronic charge, e, so the 
effects of virtual intermediate vector bosons would introduce much too 
large violations of parity and strangeness conservation, of order 1/137, 
into the strong interactions of the scalars with each other and with the 
quarks. [ 4 7] At some point in the spring of 1973 it occurred to me (and 
independently to Gross and Wilczek) that one could do away with strongly 
interacting scalar fields altogether, allowing the strong interaction gauge 
symmetry to remain unbroken so that the vector bosons, or "gluons", are 
massless, and relying on the increase of the strong forces with increasing 
distance to explain why quarks as well as the massless gluons are not seen 
in the laboratory. [ 48] Assuming no strongly interacting scalars, three 
"colors" of quarks (as indicated by earlier work of several authors [ 49]), 
and an SU(3) gauge group, one then had a specific theory of strong 
interactions, the theory now generally known as quantum chromodyna­
mics. 
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Experiments since then have increasingly confirmed QCD as the correct 
theory of strong interactions. What concerns me here, though. is its impact 
on our understanding of symmetry principles. Once again, the constraints 
of gauge invariance and renormalizability proved enormously powerful. 
These constraints force the Lagrangian to be so simple, that the strong 
interactions in QCD must conserve strangeness, charge conjugation, and 
(apart from problems [50] having to do with instantons) parity. One does 
not have to assume these symmetries as a priori principles; there is simply 
no way that the Lagrangian can be complicated enough to violate them. 
With one additional assumption, that the u and d quarks have relatively 
small masses, the strong interactions must also satisfy the approximate 
SU(2) x SU(2) symmetry of current algebra, which when spontaneously 
broken leaves us with isospin. If the s quark mass is also not too large, then 
one gets the whole eight-fold way as an approximate symmetry of the 
strong interactions. And the breaking of the SU(3)XSU(3) symmetry by 
quark masses has just the (3,3)+ (3,3) form required to account for the 
pion-pion scattering lengths [ 15] and Gell-Mann-Okubo mass formu­
las. Furthermore, with weak and electromagnetic interactions also de­
scribed by a gauge theory, the weak currents are necessarily just the 
currents associated with these strong interaction symmetries. In other 
words, pretty much the whole pattern of approximate symmetries of 
strong, weak, and electromagnetic interactions that puzzled us so much in 
the l 950's and I 960's now stands explained as a simple consequence of 
strong, weak, and electromagnetic gauge invariance, plus renormalizabi­
lity. Internal symmetry is now at the point where space-time symmetry was 
in Einstein's day. All the approximate internal symmetries are explained 
dynamically. On a fundamental level, there are no approximate or partial 
symmetries; there are only exact symmetries which govern all interactions. 

I now want to look ahead a bit, and comment on the possible future 
development of the ideas of symmetry and renormalizability. 

We are still confronted with the question whether the scalar particles 
that are responsible for the spontaneous breakdown of the electroweak 
gauge symmetry SU(2) x U(l) are really elementary. If they are, then spin 
zero semi-weakly decaying "Higgs bosons" should be found at energies 
comparable with those needed to produce the intermediate vector bosons. 
On the other hand, it may be that the scalars are composites. [51] The 
Higgs bosons would then be indistinct broad states at very high mass, 
analogous to the possible s-wave enhancement in 1T-1T scattering. There 
would probably also exist lighter, more slowly decaying, scalar particles of 
a rather different type, known as pseudo-Goldstone bosons. [52] And 
there would have to exist a new class of "extra strong" interactions [ 53] to 
provide the binding force, extra strong in the sense that asymptotic free­
dom sets in not at a few hundred MeV, as in QCD, but at a few hundred 
Ge V. This "extra strong" force would be felt by new families of fermions, 
and would give these fermions masses of the order of several hundred 
GeV. We shall see. 
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Of the four (now three) types of interactions, only gravity has resisted 
incorporation into a renormalizable quantum field theory. This may just 
mean that we are not being clever enough in our mathematical treatment 
of general relativity. But there is another possibility that seems to me quite 
plausible. The constant of gravity defines a unit of energy known as the 
Planck energy, about I 0 19 Ge V. This is the energy at which gravitation 
becomes effectively a strong interaction, so that at this energy one can no 
longer ignore its ultraviolet divergences. It may be that there is a whole 
world of new physics with unsuspected degrees of freedom at these enor­
mous energies, and that general relativity does not provide an adequate 
framework for understanding the physics of these superhigh energy de­
grees of freedom. When we explore gravitation or other ordinary phe­
nomena, with particle masses and energies no greater than a TeV or so, we 
may be learning only about an "effective" field theory; that is, one in which 
superheavy degrees of freedom do not explicitly appear, but the coupling 
parameters implicitly represent sums over these hidden degrees of free­
dom. 

To see if this makes sense, let us suppose it is true, and ask what kinds of 
interactions we would expect on this basis to find at ordinary energy. By 
"integrating out" the superhigh energy degrees of freedom in a funda­
mental theory, we generally encounter a very complicated effective field 
theory - so complicated, in fact, that it contains all interactions allowed by 
sy?1metry principles. But where dimensional analysis tells us that a cou­
ph~g constant is a certain power of some mass, that mass is likely to be a 
typical superheavy mass, such as 1019 GeV. The infinite variety of non­
renormalizable interactions in the effective theory have coupling constants 
with the dimensionality of negative powers of mass, so their effects are 
suppressed at ordinary energies by powers of energy divided by super­
heavy. masses. Thus the only interactions that we can detect at ordinary 
energies are those that are renormalizable in the usual sense, plus any non­
renormalizable interactions that produce effects which, although tiny, are 
somehow exotic enough to be seen. 

One way that a very weak interaction could be detected is for it to be 
coherent and of long range, so that it can add up and have macroscopic 
effects. It has been shown [54] that the only particles whose exchange 
could produce such forces are massless particles of spin 0, 1, or 2. And 
furthermore, Lorentz's invariance alone is enough to show that the long­
range interactions produced by any particle of mass zero and spin 2 must 
be governed by general relativity. [ 55] Thus from this point of view we 
should not be too surprised that gravitation is the only interaction discov­
ered so far that does not seem to be described by a renormalizable field 
theory - it is almost the only superweak interaction that could have been 
detected. And we should not be surprised to find that gravity is well 
described by general relativity at macroscopic scales, even if we do not 
think that general relativity applies at 1019 GeV. 



416 

Non-renormalizable effective interactions may also be detected if they 
violate otherwise exact conservation laws. The leading candidates for viola­
tion are baryon and lepton conservation. It is a remarkable consequence of 
the SU (3) and SU (2) x U (I) gauge symmetries of strong. weak. and electro­
magnetic interactions, that all renormalizable interactions among known 
particles automatically conserve baryon and lepton number. Thus. the fact 
that ordinary matter seems pretty stable, that proton decay has not been 
seen, should not lead us to the conclusion that baryon and lepton conserva­
tion are fundamental conservation laws. To the accuracy with which they 
have been verified, baryon and lepton conservation can be explained as 
dynamical consequences of other symmetries, in the same way that strange­
ness conservation has been explained within QCD. But superheavy parti­
cles may exist, and these particles may have unusual SU(3) or SU(2) x 
SU (I) transformation properties, and in this case, there is no reason why 
their interactions should conserve baryon or lepton number. I doubt that 
they would. Indeed, the fact that the universe seems to contain an excess of 
baryons over antibaryons should lead us to suspect that baryon non­
conserving processes have actually occurred. If effects of a tiny nonconser­
vation of baryon or lepton number such as proton decay or neutrino 
masses are discovered experimentally, we will then be left with gauge 
symmetries as the only true internal symmetries of nature, a conclusion 
that I would regard as most satisfactory. 

The idea of a new scale of superheavy masses has arisen in another way. 
[56] If any sort of "grand unification" of strong and electroweak gauge 
couplings is to be possible, then one would expect all of the SU(3) and 
SU(2) x U(I) gauge coupling constants ti:> be of comparable magnitude. (In 
particular, if SU(3) and SU(2) x U(l) are subgroups of a larger simple 
group, then the ratios of the squared couplings are fixed as rational 
numbers of order unity.(57]) But this appears in contradiction with the 
obvious fact that the strong interactions are stronger than the weak and 
electromagnetic interactions. In 1974 Georgi, Quinn and I suggested that 
the grand unification scale, at which the couplings are comparable, is at an 
enormous energy, and that the reason that the strong coupling is so much 
larger than the electroweak couplings at ordinary energies is that QCD is 
asymptotically free, so that its effective coupling constant rises slowly as the 
energy drops from the grand unification scale to ordinary values. The 
change of the strong couplings is very slow (like 1 /VlnE) so the grand 
unification scale must be enormous. We found that for a fairly large class 
of theories the grand unification scale comes out to be in the neighbor­
hood of 10 16 GeV, an energy not all that different from the Planck energy 
of 1019 GeV. The nucleon lifetime is very difficult to estimate accurately, 
but we gave a representative value of 1032 years, which may be accessible 
experimentally in a few years. (These estimates have been improved in 
more detailed calculations by several authors.) [58) We also calculated a 
value for the mixing parameter sin 2f-> of about 0.2, not far from the present 
experimental value40 of 0.23 ± 0.0 I. It will be an important task for future 
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experiments on neutral currents to improve the precision with which sin2e 
is known. to see if it really agrees with this prediction. 

In a grand unified theory, in order for elementary scalar particles to be 
available to produce the spontaneous breakdown of the electroweak gauge 
symmetry at a few hundred GeV, it is necessary for such particles to escape 
getting superlarge masses from the spontaneous breakdown of the grand 
unified gauge group. There is nothing impossible in this, but I have not 
been able to think of any reason why it should happen. (The problem may 
be related to the old mystery of why quantum corrections do not produce 
an enormous cosmological constant; in both cases, one is concerned with 
an anomalously small "super-renormalizable" term in the effective Lagran­
gian which has to be adjusted to be zero. In the case of the cosmological 
constant, the adjustment must be precise to some fifty decimal places.) 
With elementary scalars of small or zero bare mass, enormous ratios of 
symmetry breaking scales can arise quite naturally (59]. On the other 
hand, if there are no elementary scalars which escape getting superlarge 
masses from the breakdown of the grand unified gauge group, then as I 
have already mentioned, there must be extra strong forces to bind the 
composite Goldstone and Higgs bosons that are associated with the sponta­
neous breakdown of SU (2) x U (I). Such forces can occur rather naturally 
in grand unified theories. To take one example, suppose that the grand 
gauge group breaks, not into SU(3) x SU(2) x U(l}, but into SU(4) x SU(3) 
x SU(2) x U(l). Since SU(4) is a bigger group than SU(3), its coupling 
co_nstant rises with decreasing energy more rapidly than the QCD cou­
pling, so the SU(4) force becomes strong at a much higher energy than the 
few hundred Me V at which the QCD force becomes strong. Ordinary 
quarks and leptons would be neutral under SU(4), so they would not feel 
this force, but other fermions might carry SU(4) quantum numbers, and so 
get rather large masses. One can even imagine a sequence of increasingly 
large subgroups of the grand gauge group, which would fill in the vast 
energy range up to I 015 or I 019 Ge V with particle masses that are produced 
by these successively stronger interactions. 

If there are elementary scalars whose vacuum expectation values are 
responsible for the masses of ordinary quarks and leptons, then these 
masses can be affected in order a by radiative corrections involving the 
superheavy vector bosons of the grand gauge group, and it will probably 
be impossible to explain the value of quantities like melmµ without a 
complete grand unified theory. On the other hand, if there are no such 
elementary scalars, then almost all the details of the grand unified theory 
are forgotten by the effective field theory that describes physics at ordi­
nary energies, and it ought to be possible to calculate quark and lepton 
masses purely in terms of processes at accessible energies. Unfortunately, 
no one so far has been able to see how in this way anything resembling the 
observed pattern of masses could arise. (60] 

Putting aside all these uncertainties, suppose that there is a truly funda­
m~nta!J:!teory, characterized by an energy scale of order I 016 to I 019 Ge V, 
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at which strong, electroweak, and gravitational interactions are all united. 
It might be a conventional renormalizable quantum field theory. but at the 
moment, if we include gravity, we do not see how this is possible. (I leave 
the topic of supersymmetry and supergravity for Professor Salam's talk.) 
But if it is not renormalizable, what then determines the infinite set of 
coupling constants that are needed to absorb all the ultraviolet divergences 
of the theory? 

I think the answer must lie in the fact that the quantum field theory, 
which was born just fifty years ago from the marriage of quantum mechan­
ics with relativity, is a beautiful but not very robust child. As Landau and 
Kallen recognized long ago, quantum field theory at super high energies is 
susceptible to all sorts of diseases-tachyons, ghosts, etc.-and it needs 
special medicine to survive. One way that a quantum field theory can avoid 
these diseases is to be renormalizable and asymptotically free, but there are 
other possibilities. For instance, even an infinite set of coupling constants 
may approach a non-zero fixed point as the energy at which they are 
measured goes to infinity. However, to require this behavior generally 
imposes so many constraints on the couplings that there are only a finite 
number of free parameters left(6 l ]-just as for theories that are renormali­
zable in the usual sense. Thus, one way or another, I think that quantum 
field theory is going to go on being very stubborn, refusing to allow us to 
describe all but a small number of possible worlds, among which, we hope, 
is ours. 

I suppose that I tend to be optimistic about the future of physics. And 
nothing makes me more optimistic than the discovery of broken symme­
tries. In the seventh book of the Republic, Plato describes prisoners who are 
chained in a cave and can see only shadows that things outside cast on the 
cave wall. When released from the cave at first their eyes hurt, and for a 
while they think that the shadows they saw in the cave are more real than 
the objects they now see. But eventually their vision clears, and they can 
understand how beautiful the real world is. We are in such a cave, impris­
oned by the limitations on the sorts of experiments we can do. In particu­
lar, we can study matter only at relatively low temperatures, where symme­
tries are likely to be spontaneously broken, so that nature does not appear 
very simple or unified. We have not been able to get out of this cave, but by 
looking long and hard at the shadows on the cave wall, we can at least make 
out the shapes of symmetries, which though broken, are exact principles 
governing all phenomena, expressions of the beauty of the world outside. 

*** 
It has only been possible here to give references to a very small part of 

the literature on the subjects discussed in this talk. Additional references 
can be found in the following reviews: 

Abers, E.S. and Lee, B.W., Gauge Theories (Physics Reports 9C, No. 1, 
1973). 
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Marciano, W. and Pagels, H., Quantum Chromodynamics (Physics Reports 
36C, No. 3, 1978). 

Taylor, J.C., Gauge Theories of Weak Interactions (Cambridge Univ. Press, 
1976). 

REFERENCES 

I. Tuve, M.A., Heydenberg, N. and Hafstad, L. R. Phys. Rev. 50, 806 (1936); Breit, G., 
Condon, E. V. and Present, R. D. Phys. Rev. 50, 825 (1936); Breit, G. and Feenberg, E. 
Phys. Rev. 50, 850 (1936). 

2. Gell-Mann, M. Phys. Re\'. 92, 833 (1953); Nakano. T. and Nishijima, K. Prog. Theor. 
Phys. 10, 581 (1955). 

3. Lee, T. D. and Yang, C. N. Phys. Rev. 104, 254 (1956); Wu. C. S. et.al. Phys. Rev.105, 
14 I 3 (I 957); Garwin, R., Lederman, L. and Weinrich, M. Phys. Rev. 105, 1415 (1957); 
Friedman,]. I. and Telegdi V. L. Phys. Rev.105, 1681 (1957). 

4. Gell-Mann, M. Cal. Tech. Synchotron Laboratory Report CTSL-20 (1961), unpublished; 
Ne'eman, Y. NucJ. Phys. 26, 222 (1961). 

5. Fock, V. Z. f. Physik 39, 226 (1927); Weyl, H. z. f. Physik 56, 330 (1929). The name 
"gauge invariance" is based on an analogy with the earlier speculations of Weyl, H. in 
Raum, Zeit, Materie, 3rd edn, (Springer, 1920). Also see London, F. Z. f. Physik 42, 375 
(1927). (This history has been reviewed by Yang, C. N. in a talk at City College, ( 1977).) 

6. Yang, C. N. and Mills, R. L. Phys. Rev. 96, 191 (1954). 
7. Goldstone,]. Nuovo Cimento 19, 154 (1961). 
8. Goldstone, J., Salam, A. and Weinberg, S. Phys. Rev.127, 965 (1962). 
9· ~iggs, P. W. Phys. Lett. 12, 132 (1964); 13, 508 (1964); Phys. Rev. 145, 1156 (1966); 

Kibble, T. W. B. Phys. Rev. 155, 1554 (1967); Guralnik, G. S., Hagen, C.R. and Kibble, 
T. W. B. Phys. Rev. Lett. 13, 585 (1964); Englert, F. and Brout, R. Phys. Rev. Lett. 13, 
321 (1964); Also see Anderson, P. W. Phys. Rev.130, 439 (1963). 

10· Adler, S. L. Phys. Rev. Lett.14, 1051 (1965); Phys Rev. 140, B736 (1965); Weisberger, W. 
I. Phys. Rev. Lett.14, 1047 (1965); Phys Rev.143, 1302 (1966). 

11. Gell-Mann, M. Physics l, 63 (1964). 
12· Nambu, Y. andjona-Lasinio, G. Phys. Rev.122, 345(1961);124, 246 (1961); Nambu, Y, 

and Lurie, D. Phys. Rev. 125, 1429 (1962); Nambu. Y. and Shrauner, E. Phys. Rev.128, 
862 (1962); Also see Gell-Mann, M. and Levy, M., Nuovo Cimento 16, 705 (1960). 

13. Goldberger, M. L., Miyazawa, H. and Oehme, R. Phys Rev. 99, 986 (1955). 
14. Goldberger, M. L., and Treiman, S. B. Phys. Rev. 111, 354 (1958). 
l5 .Weinberg, S. Phys. Rev. Lett. 16, 879 (1966); 17, 336 (1966); 17, 616 (1966); 18, 188 

(1967); Phys Rev.166, 1568 (1967). 
16. Oppenheimer, J. R. Phys. Rev. 35, 461 (1930); Waller, I. Z. Phys. 59, 168 (1930); ibid., 

62' 673 ( 1930). 

17. Feynman, R. P. Rev. Mod. Phys.20, 367 (1948); Phys. Rev. 74, 939, 1430 (1948); 76, 749, 
769 (1949);80, 440 (1950); Schwinger,]. Phys. Rev. 73, 146 (1948); 74, 1439 (1948); 75, 
651 (1949); 76, 790 (1949); 82, 664, 914 (1951); 91, 713 (1953); Proc. Nat. Acad. Sci. 37, 
452 (1951); Tomonaga, S. Progr. Theor. Phys. (Japan) 1, 27 (1946); Koba, Z., Tati, T. 
and Tomonaga,S. ibid.2, IOI (1947); Kanazawa, S. and Tomonaga, S. ibid.J, 276 (1948); 
Koba, Z. and Tomonaga, S. ibid 3, 290 (1948). 

I 8. There had been earlier suggestions that infinities could be eliminated from quantum 
field theories in this way, by Weisskopf, V. F. Kong. Dansk. Vid. Sel. Mat.-Fys. Medd.15 
(6) 1936, especially p. 34 and pp. 5-6; Kramers, H. (unpublished). 

19. Dyson, F. J. Phys. Rev. 75, 486, 1736 (1949). 
20. Weinberg, S. Phys. Rev.106, 1301 (1957). 
21. Weinberg, S. Phys. Rev.118, 838 (1960). 
22. Salam, A. Phys. Rev.82, 217 (1951);84, 426 (1951). 



420 

23. Weinberg, S. Phys. Rev. Lett. 18, 507 (1967). 
24. For the non-renormalizability of theories with intrinsically broken gauge symmetries, see 

Komar, A. and Salam, A. Nucl. Phys. 21, 624 (1960): Cmezawa, H. and Kamefuchi, S. 
Nucl. Phys. 23, 399 (1961); Kamefuchi. S., O'Raifeartaigh. Land Salam,:\. Nud. Phys. 
28, 529 (1961); Salam, A. Phys. Rev. 127, 331 (1962): Veltman. M. Nud. Phys. 87, 637 

(1968); B21, 288 (1970); Boulware. D. Ann. Phys. (N. Y,) 56, 140 (1970). 
25. This work was briefly reported in reference 23, footnote 7. 
26. Weinberg, S. Phys. Rev. Lett. 19, 1264 (1967). 
27. Salam, A. In Elementary Particle Physics (Nobel Symposium No. 8), ed. by S\"artholm. N. 

(Almqvist and Wiksell, Stockholm, 1968), p. 367. 
28. deWitt, B. Phys. Rev. Lett. 12, 742 (1964): Phys. Rev. 162, 1195 (1967); Faddeev L. D .. 

and Popov, V. N. Phys. Lett. 825, 29 ( 1967): Also see Feynman. R. P. Acta. Phys. Pol. 24, 
697 (1963); Mandelstam, S. Phys. Rev. 175, 1580, 1604 (1968). 

29. See Stuller, L l\L I. T.. Thesis, Ph. D. ( 1971 ). unpublished. 
30. My work with the unitarity gauge was reported in Weinberg, S. Phys. Rev. Lett. 27, 1688 

(1971), and described in more detail in Weinberg. S. Phys. Rev. D7. 1068 (1973). 
31. 't Hooft.G Nucl. Phys.B35, 167 (1971). 
32. Lee, B. W. and Zin~-Justin,J. Phys. Rev. D5, 3121, 3137. :·H55 (1972): 't Hooft, C. and 

Veltman. M. Nud. Phys. B44, 189 (1972). B50, 318 (1972). There still remained the 
problem of possible Adler-Bdl-Jackiw anomalies, but these nicely cam·clled; see D. J. 
Gross and R. Jackiw, Phys. Re\". D6, 477 (1972) and C. Bouchiat, .J. Iliopoulos. and Ph. 
Meyer. Phys. Lett. 388, 519 (1972). 

33. Beechi, C .. Rouet, A. and Stora R. Comm. Math. Phys. 42, 127 ( 1975). 
34. Lee, B. W. Phys. Rev. D5, 823 (1972). 
35. Gamow, G. and Teller, E. Phys. Rev. 51, 288 (1937); Kt•mmer, N. Phys. Rev. 52, 906 

( 1937); Wentzel, G. Hclv. Phys. Acta. JO, 108 ( 1937); Bludman, S. Nuorn Cimento 9, 433 
(1958); Leite-Lopes.J. Nucl. Fhys.8, 234 (1958). 

36. Glashow, S. L. Nucl. Phys. 22, 519 (1961); Salam, A. and Ward,J. C. Phys. Lett. 13, 168 
( 1964). 

37. Weinberg. S. Phys. Rev. 5, 1412 (1972). 
38. Cundy, D. C. et.al., Phys. Lett. 3JB, 478 (1970). 
39. The first published discovery of neutral currents was at the Gargamelle Bubble Chamber 

<!t CERN: Hasen. F.J. et.al., Phys. Lett.468, 121, 138 (1973). Also see Mussel, P.Jour. 
de Physique I 1/12 T34 (1973). Muonless events were seen at about the same time by the 
HPWF group at Fermilab, but when publication of their paper was delayed, they took the 
opportunity to rebuild their detector, and then did not at first find the same neutral 
current signal. The HPWF group published evidence for neutral currents in Benvenuti, 
A. et.al., Phys. Rev. Lett. 32, 800 (1974). 

40. For a survey of the data see Baltay, C. Proceedings of the 19th International Conferenre on 
High Energy Physics, Tokyo, 1978. For theoretical analyses, see Abbott, L F. and Barnett, 
R. M. Phys. Rev. DJ9, 3230 (1979); Langacker, P., Kim,J. E., Levine. M .. Williams, H. H. 
and Sidhu, D. P. Neutrino Conference '79; and earlier references cited therein. 

41. Prescott, C. Y. et.al., Phys. Lett. 778, 347 (1978). 

42. Glashow, S. L. and Georgi, H. L. Phys. Rev. Lett. 28, 1494 (I 972). Also see Schwinger. J. 
Annals of Physics (N. Y.)2, 407 (1957). 

43. Glashcm·, S. L.. Iliopoulos, J. and Maiani, L. Phys. Rev. D2, 1285 (1970). This paper was 

cited in ref. 37 as providing a possible solution to the problem of strangeness changing 
neutral currents. However, at that time I was skeptical about the quark model, so in the 
calculations of ref. 37 baryons were incorporated in the theory by taking the protons and 
neutrons to form an SU(2) doublet, with strange particles simply ignored. 

44. Politzcr, H. D. Phys. Rev. Lett. 30, 1346 ( 1973); Gross, D . .J. and Wikzek, F. Phys. Rev. 

Lett. 30, 1343 (1973). 
45. Energy dependent effe<·tive couping constants were introduced by Gell-Mann, M. and 

Low, F. E. Phys. Rev. 95, 1300 (1954). 
46. Bloom, E. D. et.al., Phys. Rev. Lett. 23, 930 (1969); Breidenbach, M. et.al., Phys. Rev. 

Lett. 23, 935 (I 969). 



421 

47. Weinberg. S. Phys. Rev. DB. 605 (1973). 
48. Gross, D. J. and Wilczek, F. Phys. Rev.DB. 3633 (1973); Weinberg, S. Phys. Rev. Lett.JI. 

494 ( 1973 ). :\ similar idea had been proposed before the discovery of asymptotic free­
dom by Fritzsch, H., Gell-Mann, M. and Leutwyler, H. Phys. Lett. 47B, 365 (1973). 

49. Greenberg. 0. W. Phys. Rev. Lett.13, 598 (1964): Han, M. Y. and Nambu, Y. Phys. Rev. 
139, Bl006 (1965): Bardeen, W. A., Fritzsch, H. and Gell-Mann, M. inScileandConfor­
mal Symmetry in Hadron Physics. ed. by Gatto, R. (Wiley, 1973), p. 139; etc. 

50. 't Hooft, G. Phys. Rev. Lett. 37, 8 (1976). 
51. Such "dynamical" mechanisms for spontaneous symmetry breaking were first discussed 

by Nambu. Y. and Jona-Lasinio, G. Phys. Rev. 122, 345 (1961); Schwinger, J. Phys. Rev. 
125, 397 (1962); 12B, 2425 (1962); and in the context of modern gauge theories by 
Jackiw, R. and Johnson, K. Phys. Rev.DB, 2386 (1973); Cornwall,J. M. and Norton, R. E. 
Phys. Rev. DB, 3338 ( 1973). The implications of dynamical symmetry breaking have been 
ronsidered by Weinberg, S. Phys. ~ev. D/3, 974 (1976); D/9, 1277 (1979); Susskind, L. 
Phys. Rev.D20, 2619 (1979). 

52. Weinberg, S. ref 51. The possibility of pseudo-Goldstone bosons was originally noted in a 
different context by Weinberg. S. Phys. Rev. Lett. 29, 1698 ( 1972). 

53. Weinberg. S. ref. 51. Models involving such interactions have also been discussed by 
Susskind, L. ref. 51. 

54. Weinberg, S. Phys. Rev. 135, B 1049 ( 1964). 
55. Weinberg. S. Phys. Lett. 9, 357 (1964); Phys. Rev. BJ3B, 988 (1965); Lectures in Particles 

and Field Theory, ed. by Descr, S. and Ford, K. (Prentice-Hall, 1965), p. 988; and ref. 54. 

!he program of deri~ing general relativity from quantum mechanics and special relativ­
ity was completed by Boulware, D. and Deser, S. Ann. Phys.89, 173 (1975). I understand 
that similar ideas were developed by Feynman, R. in unpublished lectures at Cal. Tech. 

56. Georgi, H., Quinn, H. and Weinberg, S. Phys. Rev. Lett. 33, 451 (1974). 
57. An. example of a simple gauge group for weak and electromagnetic interactions (for­

which sin7<l=!) was given by S. Weinberg, Phys. Rev. D5, 1962 (1972). There are a 
~umber of specific models of weak. electromagnetic, and strong interactions based on 
simple gauge groups, including those of Paci, J. C. and Salam, A. Phys. Rev. DIO, 275 
(l 974); Georgi, H. and Glashow, S. L. Phys. Rev. Lett. 32, 438 (1974); Georgi, H. in 
Particles and Fields (American Institute of Physics, 1975); Fritzsch, H. and Minkowski, P. 
Ann. Phys. 93, 193 (1975); Georgi, H. and Nanopoulos, D. V. Phys. Lett. B2B, 392 
0 979): Gursey. F. Ramond, P. and Sikivie, P. Phys. Lett.B60, 177 (1975); Giirsey, F. and 
Sikivie, P. Phys. Rev. Lett.36, 775 (1976); Ramond, P. Nucl. Phys,BIJO, 214 (1976); etc; 
all these violate baryon and lepton conservation, because they have quarks and leptons in 
the same multiplet; see Paci, J.C. and Salam. A. Phys. Rev. Lett. 31, 661 (1973); Phys. 
Rev. 08, 1240 (1973). 

58. Buras, A., Ellis, J., Gaillard, M. K. and Nanopoulos, D. V. Nucl. Phys. BI35, 66 (1978); 
Ross. D. Nucl. Phys. B140, I (1978); Marciano, W. J. Phys. Rev. D20, 274 (1979); 
Goldman, T. and Ross, D. CAL T 68-704, to be published; Jarlskog, C. and Yndurain, F. 
J. CERN preprint, to be published. Machacek, M. Harvard preprint HUTP-79/A021, to 
be published in Nuclear Physics; Weinberg, S. paper in preparation. The phenomenono­
logy of nucleon decay has been discussed in general terms by Weinberg, S. Phys. Rev. 
Leu. 43, 1566 (1979): Wilczek. F. and Zee, A. Phys. Rev. Lett. 43, 1571 (1979). 

59. Gildener, E. and Weinberg, S. Phys. Rev. DI3, 3333 (1976); Weinberg, S. Phys. Letters 
82B, 387 ( 1979). In general there should exist at least one scalar particle with physical 
mass of order 10 GeV. The spontaneous symmetry breaking in models with zero bare 
scalar mass was first considered by Coleman, S. and Weinberg, E., Phys. Rev. D 7, 1888 
(1973 ). 

60. This problem has been studied recently by Dimopoulos, S. and Susskind, L. Nucl. Phys. 
815'5, 237 (l 979); Eichten, E. and Lane, K. Physics Letters, to be published; Weinberg, S. 
unpuhlished. 

fi I. Weinberg, S. in General Relativity - An Einstein Centenary Suroey, ed. by Hawking, S. W. 
and Israel, W. (Cambridge Univ. Press, 1979), Chapter 16. 





GAUGE UNIFICATION OF FUNDAMENTAL 
FORCES 
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Introduction: In June 1938, Sir George Thomson, then Professor of Physics 
at Imperial College, London, delivered his I 937 Nobel Lecture. Speaking 
of Alfred Nobel, he said: "The idealism which permeated his character led 
him to ... (being) as much concerned with helping science as a whole, as 
individual scientists .... The Swedish people under the leadership of the 
Royal Family and through the medium of the Royal Academy of Sciences 
have made Nobel Prizes one of the chief causes of the growth of the 
prestige of science in the eyes of the world ... As a recipient of Nobel's 
generosity, I owe sincerest thanks to them as well as to him." 

I am sure I am echoing my colleagues' feelings as well as my own, in 
reinforcing what Sir George Thomson said-in respect of Nobel's generos­
it~ and its influence on the growth of the prestige of science. Nowhere is 
this more true than in the developing world. And it is in this context that I 
have been encouraged by the Permanent Secretary of the Academy -
Professor Carl Gustaf Bernhard-to say a few words before I turn to the 
scientific part of my lecture. 

Scientific thought and its creation is the common and shared heritage of 
mankind. In this respect, the history of science, like the history of all 
civilization, has gone through cycles. Perhaps I can illustrate this with an 
actual exam pie. 

Seven hundred and sixty years ago, a young Scotsman left his native 
glens to travel south to Toledo in Spain. His name was Michael, his goal to 
live and work at the Arab Universities of Toledo and Cordova, where the 
greatest of Jewish scholars, Moses bin Maimoun, had taught a generation 
before. 

Michael reached Toledo in 1217 AD. Once in Toledo, Michael formed 
the ambitious project of introducing Aristotle to Latin Europe, translating 
not from the original Greek, which he did not know, but from the Arabic 
translation then taught in Spain. From Toledo, Michael travelled to Sicily, 
to the Court of Emperor Frederick II. 

Visiting the medical school at Salerno, chartered by Frederick in I 231, 
Michael met the Danish physician, Henrik Harpestraeng - later to be­
come Court Physician of King Erik Plovpenning. Henrik had come to 
Salerno to compose his treatise on~lood-letting and surgery. Henrik's 
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sources were the medical canons of the great clinicians of Islam, Al-Razi 
and Avicenna, which only Michael the Scot could translate for him. 

Toledo's and Salerno's schools, representing as they did the finest syn­
thesis of Arabic, Greek. Latin and Hebrew scholarship. were some of the 
most memorable of international assays in scientific collaboration. To 
Toledo and Salerno came scholars not only from the rich countries of the 
East and the South, like Syria, Egypt, Iran and Afghanistan. but also from 
developing lands of the West and the North like Scotland and Scandinavia. 
Then, as now, there were obstacles to this international scientific con­
course, with an economic and intellectual disparity between different parts 
of the world. Men like Michael the Scot or Henrik Harpestraeng were 
singularities. They did not represent any flourishing schools of research in 
their own countries. With all the best will in the world their teachers at 
Toledo and Salerno doubted the wisdom and value of training them for 
advanced scientific research. At least one of his masters counselled young 
Michael the Scot to go back to clipping sheep and to the weaving of 
woollen cloth. 

In respect of this cycle of scientific disparity, perhaps I can be more 
quantitative. George Sarton, in his monumental five-volume History of 
Science chose to divide his story of achievement in sciences into ages, each 
age lasting half a century. With each half century he associated one central 
figure. Thus 450 BC-400 BC Sarton calls the Age of Plato; this is fol­
lowed by half centuries of Aristotle, of Euclid, of Archimedes and so on. 
From 600 AD to 650 AD is the Chinese half century of Hsiian Tsang, from 
650 to 700 AD that of I-Ching, and then from 750 AD to 1100 AD-350 
years continuously-it is the unbroken succession of the Ages of Jabir, 
Khwarizmi, Razi, Masudi, Wafa, Biruni and Avicenna, and then Omar 
Khayam-Arabs, Turks, Afghans and Persians-men belonging to the 
culture of Islam. After 1100 appear the first Western names; Gerard of 
Cremona, Roger Bacon -but the honours are still shared with the names 
of Ibn-Rushd (Averroes), Moses Bin Maimoun, Tusi and Ibn-Nafis-the 
man who anticipated Harvey's theory of circulation of blood. No Sarton 
has yet chronicled the history of scientific creativity among the pre-Spanish 
Mayas and Aztecs, with their invention of the zero, of the calendars of the 
moon and Venus and of their diverse pharmacological discoveries, includ­
ing quinine, but the outline of the story is the same-one of undoubted 
superiority to the Western contemporary correlates. 

After 1350, however, the developing world loses out except for the 
occasional flash of scientific work, like that of Ulugh Beg-the grandson of 
Timurlane, in Samarkand in 1400 AD; or of Maharaja Jai Singh of Jaipur 
in 1720-who corrected the serious errors of the then Western tables of 
eclipses of the sun and the moon by as much as six minutes of arc. As it 
was, Jai Singh's techniques were surpassed soon after with the develop­
ment of the telescope in Europe. As a contemporary Indian chronicler 
wrote: "With him on the funeral pyre, expired also all science in the East. 0 

And this brings us to this century when the cycle begun by Michael the Scot 
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turns full circle. and it is we in the developing world who turn to the 
Westwards for science. As Al-Kindi wrote 1100 years ago: "It is fitting then 
for us not to be ashamed to acknowledge and to assimilate it from what­
ever source it comes to us. For him who scales the truth there is nothing of 
higher \'afue than truth itself; it never cheapens nor abases him." 
Ladies and Gentlemen. 

It is in the spirit of Al-Kindi that I start my lecture with a sincere 
expression of gratitude to the modern equivalents of the Universities of 
Toledo and Cordova, which I have been privileged to be associated with­
Cambridge, Imperial College, and the Centre at Trieste. 

I. FU:'\:D:\~IE~T:\L PARTICLES. FU!\IDAMENTAL FORCES 
:\ND GAUGE UNIFIC:\TION 

The Nobe) lectures this year are concerned with a set of ideas relevant to the 
gauge unification of the electromagnetic force with the weak nuclear force. 
These lectures coincide nearly with the I 0011i death-anniversary of Maxwell, 
with whom the first unification of forces (electric with the magnetic) matured 
and with whom gauge theories originated. They also nearly coincide with the 
loo lh • h . . f anmversary of the birth of Einstein-the man who gave us t e v1s1on o an 
ultimate unification of all forces. 

The ideas of today started more than twenty years ago, as gleams in several 
theoretical eyes. They were brought to predictive maturity over a decade back. 
And they started to receive experimental confirmation some six years ago. 

In some senses then, our story has a fairly long background in the past. In 
this lecture I wish to examine some of the theoretical gleams of today and ask 
the question if these may be the ideas to watch for maturity twenty years from 
now. 

From time immemorial, man has desired to comprehend the complexity of 
nature in terms of as few elementary concepts as possible. Among his quests-in 
Feynman's words-has been the one for "wheels within wheels"-the task of 
natural philosophy being to discover the innermost wheels if any such exist. 
A second quest has concerned itself with the fundamental forces which make 
the wheels go round and enmesh with one another. The greatness of gauge 
ideas-of gauge field theories-is that they reduce these two quests to just one; 

elementary particles (described by relativistic quantum fields) are representa­
tions of certain charge operators, corresponding to gravitational mass, spin, 
flavour, colour, electric charge and the like, while the fundamental forces are 
the forces of attraction or repulsion between these same charges. A third quest 
seeks for a unification between the charges (and thus of the forces) by 
searching for a single entity, of which the various charges are components in 
the sense that they can be transformed one into the other. 

But are all fundamental forces gauge forces? Can they be understood as 
such, in terms of charges-and their corresponding currents-only? And if they 
are, how many charges? What unified entity are the charges components of? 
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\Vhat is the nature of charge? Just as Einstein comprehended the nature of 
gravitational charge in terms of space-time cun·~turc .. c~11 we comprel~end the 
nature of the other charges-the nature of the en lire umhed set, as a set, m terms 
of something equally profound? This briefly is the dream. much reinforced by 
the verification of gauge theory predictions. But before I examine the new 
theoretical ideas on oiler for the future in this particular context, I would like 
your indulgence to range over a one-man, purely subjective, perspective in 
respect of the developments of the last twenty years themselves. The point I 
wish to emphasize during this part of my talk was well made by G. P. Thomson 
in his 1937 Nobel Lecture. G. P. said " ... The goddess of learning is fabled to 

have sprung full grown from the brain of Zeus, but it is seldom that a 

scientific conception is born in its final form, or owns a single parent. More 
often it is the product of a series of minds, each in turn modifying the ideas 
of those that came before, and providing material for those that come after." 

II. THE EMERGENCE OF SPONTANEOUSLY BROKEN SU(2)xU(l) 
GAUGE THEORY 

I started physics research thirty years ago as an experimental physicist in the 

Cavendish, experimenting with tritium-deuterium scattering. Soon I knew the 

craft of experimental physics was beyond me-it was the sublime quality of 
patience-patience in accumulating data, patience with recalcitrant equip­
ment-which I sadly lacked. Reluctantly I turned my papers in, and started 
instead on quantum field theory with Nicholas Kemmer in the exciting 
department of P.A. M. Dirac. 

The year 1949 was the culminating year of the Tomonaga-Schwinger­
Feynman-Dyson reformulation of renormalized Maxwell-Dirac gauge theory, 
and its triumphant experimental vindication. A field theory must be 
renormalizable and be capable of being made free of infinities-first discussed 
by Waller-if perturbative calculations with it are to make any sense. 
More-a renormalizable theory, with no dimensional parameter in its inter­
action term, connotes somehow that the fields represent "structureless" 
elementary entities. With Paul Matthews, we started on an exploration of 
renormalizability of meson theories. Finding that renormalizability held only 
for spin-zero mesons and that these were the only mesons that empirically 
existed then, (pseudoscalar pions, invented by Kemmer, following Yukawa) 

one felt thrillingly euphoric that with the triplet of pions (considered as the 
carriers of the strong nuclear force between the proton-neutron doublet) one 
might resolve the dilemma of the origin of this particular force which is 

responsible for fusion and fission. By the same token, the so-called weak 
nuclear force-the force responsible for /:1-radioactivity (and described then 
by Fermi's non-renormalizable theory) had to be mediated by some unknown 
spin-zero mesons if it was to be renormalizable, If massive charged spin-one 
mesons were to mediate this interaction, the theory would be non­
renormalizable, according to the ideas then. 

Now this agreeably renormalizable spin-zero theory for the pion was a 
field theory, but not a gauge field theory. There was no conserved charge 
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which determined the pionic interaction. As is well known, shortly after the 

theory was elaborated, it was found wanting. The {~, ~) resonance /:1 effectively 

kilJed it off as a fundamental theory; we were dealing with a complex dynamical 
system. not ''structureless" in the field-theoretic sense. 

For me, personally, the trek to gauge theories as candidates for fundamental 
physical theories started in earnest in September 1956--the year I heard at the 
Seattle Conference Professor Yang expound his and Professor Lee's ideasf1] on 
the possibility of the hitherto sacred principle of left-right symmetry, being 
violated in the realm of the u·eak nuclear force. Lee and Yang had been led to 

consider abandoning left-right symmetry for weak nuclear interactions as a 

possible resolution of the (T, 8) puzzle. I remember travelling back to 

London on an American Air Force (MATS) transport flight. Although I had 
been granted. for that night. the status of a Brigadier or a Field Marshal-I 
don't quite remember which-the plane was \'ery uncomfortable; full of crying 
ser\'ice-men's children-that is, the children were crying, not the servicemen. 
I could not sleep. I kept reflecting on why Nature should violate left-right 
symmetry in weak interactions. Now the hallmark of most weak interactions 

was the involvement in radioactivity phenomena of Pauli's neutrino. While 
crossing over the Atlantic, came back to me a deeply perceptive question 

about the neutrino which Professor Rudolf Peierls had asked when he was 
examining me for a Ph. D. a few vears before. Peierls' question was: "The 
photon mass is zero because of Ma~well's principle of a gauge symmetry for 
electromagnetism; tell me, why is the neutrino mass zero?" I had then felt 
somewhat uncomfortable at Peierls, asking for a Ph.D. viva, a question of which 
he himself said he did not know the answer. But during that comfortless night the 
answer came. The analogue for the neutrino, of the gauge symmetry for the 
photon existed; it had to do with the masslessness of the neutrino, with 
symmetry under the y5 transformationf2] (later christened "chiral symmetry"). 
The t>xistence of this symmetry for the massless neutrino must imply a 
combination (I +y:,) or (I -y5) for the neutrino interactions. Nature had 
the choice of an aesthetically satisfying but a left-right symmetry violating 
theory, with a neutrino which travels exactly with the velocity of light; or 
alternatively a theory where left-right symmetry is preserved, but the neutrino 
has a tiny mass-some ten thousand times smaller than the mass of the electron. 

It appeared at that time clear to me what choice Nature must have made. 

Surely, left-right symmetry must be sacrificl"'d in all neutrino interactions. I got 
off the plane the next morning, naturally very elated. I rushed to the Cavendish, 

worked out the Michel paiameter and a few other consequences ofy5 symmetry, 
rushed out again, got into a train to Birmingham when.~ Peierls lived. To 
Peicrls I presC'nted my idea; he had asked the original question; could he approve 
of the answer? Peierls' reply was kind but firm. He said "I do not believe 
left-right symmetry is violated in weak nuclear forces at all. I would not touch 
such ideas with a pair of tongs." Thus rebuffed in Birmingham, like 
Zulcika Dobson, I wondered where I could go next and the obvious place was 
CERN in Geneva, with Pauli-the father of the neutrino-nearby in Zurich. 
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At that time CERN lived in a wooden hut just outside Gene\'a airport. Besides 
my friends, Prcntki and d'Espagnat, the hut contained a gas ring on which was 
cooked the staple diet ofCERN-Entrecote a la creme. The hut also contained 
Professor Villars of MIT, who was visiting Pauli the same day in Zurich. I 
gave him my paper. He returned the next day with a message from the Oracle; 
"Give my regards to my friend Salam and tell him to think of something better". 
This was discouraging, but I was compensated by Pauli's excessi\'c kindness a 
few months later, when Mrs. \Vu's[3], Lederman's[4] and Telegdi'sl 5] experi­
ments were announced showing that left-right symmetry was indeed violated 
and ideas similar to mine about chiral s~·mmctry were expressed independently 
by Landau[6) and Lee and YangPJ. I received Pauli's first somewhat 

apologetic leatter on 24 January 1957. Thinking that Pauli's spirit should by 
now be suitably crushed, I sent him two short notes[8] I had written in the 
meantime. These contained suggestions to extend chiral symmetry to electrons 
and muons, assuming that their masses- were a consequence of what has 
come to be known as dynamical spontaneous symmetry breaking. \\'ith 
chiral symmetry for electrons. muons and neutrinos, the only mesons that 
could mediate weak decays of the muons would have to carry spin one. 

Reviving thus the notion of charged intermediate spin-one bosons, one could 
then postulate for these a type of gauge invariance which I called the .. neutrino 
gauge". Pauli's reaction was swift and terrible. He wrote on 30'h January 
1957, then on 18 February and later on l 1, 12 and 13 March: "I am reading 
(along the shores of Lake Zurich) in bright sunshine quietly your paper ... " 
"I am very much startled on the title of your paper 'Universal Fermi interaction' 
... For quite a while I have for myself the rule if a theoretician says universal 
it just means pure nonsense. This holds particularly in connection with the 
Fermi interaction, but otherwise too, and now you too, Brutus, my son, come 
with this word .... " Earlier, on 30 January, he had written "There is a 
similarity between this type of gauge invariance and that which was published 
by Yang and Mills ... In the latter, of course, no y", was used in the exponent." 
and he gave me the full reference of Yang and .Mills' paper; (Phys. RC\·. 96, 
191 (1954)). I quote from his letter: "However, there arc dark points in your 
paper regarding the vector field Bµ- If the rest mass is infinite (or very large), 
how can this be compatible with the gauge transformation B~, ~ Bµ - a~,J\.?" 

and he concludes his letter with the remark: "Every reader will realize that 
you deliberately conceal here something and will ask you the same questions". 

Although he signed himself "With friendly regards", Pauli had forgotten his 
earlier penitence. He was clearly and rightly on the warpath. 

Now the fact that I was using gauge ideas similar to the Yang-Mills 
(non-Abelian SU(2)-invariant) gauge theory was no news to me. This was 
because the Yang-Mills theory[9) (which married gauge ideas or l\1axwell 
with the internal symmetry SU (2) of which the proton-neutron system con­
stituted a doublet) had been independently invented by a Ph. D. pupil of mine, 
Ronald ShawJ IO] at Cambridge al the same time as Yang and Mills had 
written. Shaw's work is relatively unknown; it remains buried in his Cambridge 
thesis. I must admit I was taken aback by Pauli's fierce prejudice against 
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universalism-against what we would today call unification of basic forces­
but I did not take this too seriously. I felt this was a legacy of the exasperation 
which Pauli had always felt at Einstein's somewhat formalistic attempts at 
unifying gravity with electromagnetism-forces which in Pauli's phrase "cannot 
be joined-for God hath rent them asunder". But Pauli was absolutely right 
in accusing me of darkness about the problem of the masses of the Yang-Mills 
fields; one could not obtain a mass without wantonly destroying the gauge 
symmetry one had started with. And this was particularly serious in this context, 
because Yang and :Mills had conjectured the desirable renormalizability of 
their theory with a proof which relied heavily and exceptionally on the mass­
lessness of their spin-one intermediate mesons. The problem was to be solved 

only seven years later with the understanding of what is now known as the 
Higgs mechanism, but I will come back to this later. 

Be that as it may, the point I wish to make from this exchange with 
Pauli is that already in early 195 7, just after the first set of parity experiments, 
many ideas coming to fruition now, had started to become clear. These are: 
I. First was the idea of chiral symmetry leading to a V-A theory. In those 

early days my humble suggestionl2], [8] of this was limited to neutrinos, 
electrons and muons only, while shortly after, that year, Sudarshan and 
Marshak,(I I] Feynman and Gell-MannJ 12] and Sakurai[13] had the 

courage to postulate y5 symmetry for baryons as well as leptons, making 
this into a universal principle of physics. 1 

Concomitant with the ( V-A) theory was the result that if weak interactions are mediated 

by intermediate mesons, these must car~y spin one. 

2. Second, was the idea of spontaneous breaking of chiral symmetry to generate 
electron and muon masses: though the price which those latter-day Shylocks, 
Nam bu and Jona-Lasinio[l 4) and GoldstoneP 5 J exacted for this (i.e. the 

appearance of massless scalars), was not yet appreciated. 
3. And finally, though the use of a Yang-Mills-Shaw (non-Abelian) gauge 

theory for describing spin-one intermediate charged mesons was suggested 
already in 195 7, the giving of masses to the intermediate bosons through 
spontaneous symmetry breaking, in a manner to preserve the renormaliz­
ability of the theory, was to be accomplished only during a long period of 
theoretical development between 1963 and 1971. 

Once the Yang-Mills-Shaw ideas were accepted as relevant to the charged 

\veak currents-to which the charged intermediate mesons were coupled in this 
theory--during 195 7 and 1958 was raised the question of what was the third 
component of the S V (2) triplet, of which the charged weak currents were the 
two nwmbers. There were the two alternatives: the electroweak unification 
suggestion, where the electromagnetic current was assumed to be this third 
component; and the rival suggestion that the third component was a neutral 
current unconnected with electroweak unification. With hindsight, I shall 

1 

Today we believe protons and neutrons arc composites of quarks, so that Y.1 symmetry is now 
postulated for the rlementary entities of today-the quarks. 
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call these the KleinP 6) (1938) and the KemmerP 7) (1937) alternatives. The 
Klein suggestion, made in the context of a Kaluza-Klein five-dimensional 
space-time, is a real tour-de-force; it combined two hypothetical spin-one 

charged mesons with the photon in one multiplet, deducing from the compacti­

fication of the fifth dimension, a theory which looks like Yang-Mills-Shaw's. 

Klein intended his charged mesons for strong interactions, but if we read charged 
weak mesons for Klein's strong ones, one obtains the theory independently 
suggested by Schwinger[ 18) ( 195 7), though Schwinger, unlike Klein, did not 
build in any non-Abelian gauge aspects. With just these non-Abelian Yang­
Mills gauge aspects very much to the fore, the idea of uniting weak interactions 

with electromagnetism was developed by Glashowl 19] and Ward and myselrl20J 
in late 1958. The rival Kemmer suggestion of a global SU (2)-invariant triplet 

of weak charged and neutral currents was independently suggested by Blud­
man[2 l] ( 1958) in a gauge context and this is how matters stood till 1960. 

To give you the flavour of, for example, the year 1960, there is a paper 
written that year of Ward and myselrl22) with the statement: "Our basic 
postulate is that it should be possible to generate strong, weak and electro­
magnetic interaction terms with all their correct symmetry properties (as well 

as with clues regarding their relative strengths) by making local gauge trans­

formations on the kinetic energy terms in the free Lagrangian for all particles. 

This is the statement of an ideal which, in this paper at least, is only very 
partially realized". I am not laying a claim that we were the only ones who 
were saying this, but I just wish to convey to you the temper of the physics 
of twenty years ago-qualitatively no different today from then. But what a 
quantitative difference the next twenty years made, first with new and far­
reaching developments in theory-and then, thanks to CERN, Fermilab, Brook­
haven, Argonne, Serpukhov and SLAC in testing it! 

So far as theory itself is concerned, it was the next seven years between 

1961-67 which were the crucial years of quantitative comprehension of the 
phenomenon of spontaneous symmetry breaking and the emergence of the 
SU (2) XU (I) theory in a form capable of being tested. The story is well known 
and Steve Weinberg has already spoken about it. So I will give the barest 
outline. First there was the realization that the two alternatives mentioned 
above a pure electromagnetic current versus a pure neutral current-Klein­
Schwinger versus Kemmer-Bludman-were not alternatives; they were com­

plementary. As was noted by Glashow[23] and independently by \Vard and 

myselfi24J, both types of currents and the corresponding gauge particles 
(\V±, Z 0 and y) were needed in order to build a theory that could simultaneously 

accommodate parity violation for weak and parity conservation for the electro­
magnetic phenomena. Second, there was the influential paper of Goldstone[2S] 
in 1961 which, utilizing a non-gauge self-interaction between scalar particles, 
showed that the price of spontaneous breaking of a continuous internal 
symmetry was the appearance of zero mass scalars-a result foreshadowed 
earlier by Nambu. In giving a proof of this theorem[26] with Goldstone I 

collaborated with Steve W cinberg, who spent a year at Imperial College in 

London. 
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I v.:ould like to pay here a most sincerely felt tribute to him and to Sheldon 
Glashow for their warm and personal friendship. 

I shall not dwell on the now well-known contributions of Anderson[27], 
Higgsl 28l. Brout & Englcrt[29l, Guralnik, Hagen and Kibble[30] starting from 

1963, which showed the way how spontaneous symmetry breaking using 
spin-zero fields could generate \'ector-meson masses, defeating Goldstone at the 
same time. This is the so-called Higgs mechanism. 

The final ~t·~f s t~ward~s· the electrowea~ theory were take_n by Weinbergl3 I] 
and myself{ .L (with Kibble at I mpenal College tutormg me about the 
Higgs phenomena). \Ve were able to complete the present formulation of 
the spontaneously broken SU (2) x U (I) theory so far as leptonic weak inter­

actions were concerned-with one parameter sin28 describing all weak and 

electromagnetic phenomena and with one isodoublet Higgs multielet. An 
account of this development was given during the contributionf32j to the 
Nobel Symposium (organized by Nils S\'artholm and chaired by Lamek Hulthen 
held at Gothenburg after some postponements, in early 1968). As is well known, 
we did not then, and still do not, have a prediction for the scalar Higgs mass. 

Both Weinberg and I suspected that this theory was likely to be renormaliz­
able. ~Regarding spontaneously broken Yang-1\lills-Shaw theories in general 
this had earlier been suggested by Englert, Brout and Thiry[29J. But this 

subject was not pursued seriously except at Veltman's school at Utrecht, where 
the proof of renormalizability was given by 't Hooft[33] in 1971. This was 
elaborated further by that remarkable physicist the late Benjamin Leel34], 
working with Zinn Justin, and by 't Hooft and Veltman[35J. This followed on 
the farlier basic advances in Yang-Mills calculational technology by Feyn­
man 

361, DeWiu[37] Faddeev and Popov[38], Mandelstam[39], Fradkin and 
Tyutinl 401, Bou I war~[ 411, Taylor[ 42], Slavnovl 43), Strathdeel 44] and Salam. 

In Coleman's eloquent phrase "'t Hooft's work turned the Weinberg-Salam 

fr~g into an enchanted prince". Just before had come the GIM (Glashow, 
lhopoulos and Maiani) mechanism[45], emphasising that the existence of the 
fourth charmed quark (postulated earlier by several authors) was essential to 
the natural resolution of the dilemma posed by the absence of strangeness­
-violating currents. This tied in naturally with the understanding of the 
Steinherger-Schwinger-Rosenberg-Bell-Jackiw-Adler anomalyl46] and 
its removal for SU (2) x U (I) by the parallelism of four quarks and four leptons, 
pointed out by Bouchiat, Iliopoulos and Meyer and independently by Gross 
and Jackiw J 4 7] 

: \\'hen I was disrnssing the final version of the SU (2) x U (I) theory and its possible rcnormaliz­

abili1y in Autumn 1967 during a post-doctoral course of lectures at Imperial College, Nino 
Zid1ichi from CERN happened to be present. I was delighted because Zichichi had bC'en badgering 
nu· since I 95H with persistent questioning of what thcorC'tical avail his precise measurements 

on ( g-'.l) frJr the muon as \veil as those of the muon lifetime were, when not only the magnitude of 
llw drctromagnetic corrections to weak decays was uncertain, but also conversely the effect of 
non-renormalizable Wt'ak interactions on "renormalized" electromagnetism was so unclear. 
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If one has kept a count. I ha\·e so far mentioned around fifty theoreticians. 
As a failed experimenter. I have ahvays felt envious of the ambience of large 
experimental teams and it gives me the greatest pleasure to acknowledge the 
direct or the indirect contributions of the "series of minds'' to the spontaneously 
broken SU(2)XU(l) gauge theory . .\ly profoundest personal appreciation goes 
to my collaborators at Imperial College, Cambridge, and the Trieste Centre, 
John Ward, Paul Matthews, Jogesh Pati, John Strathdce, Tom Kibble and to 
Nicholas Kemmer. 

In retrospect, what strikes me most about the early part of this story is 
how uninformed all of us were, not only of each other's work, but also of work 
done earlier. For example, only in 1972 did I learn of Kcmmer's paper written 

at Imperial College in 1937. 
Kemmer's argument essentially was that Fermi's weak theory was not 

globally SU(2) invariant and should be made so-though not for its own sake 
but as a prototype for strong interactions. Then this year I learnt that earlier, 
in 1936, Kemmer's Ph. D. supervisor, Gregor Wentze1[48), had introduced 
(the yet undiscovered) analogues of lepta-quarks, whose mediation could give 
rise to neutral currents after a Fierz reshuffie. And only this summer, Cecilia 
Jarlskog at Bergen rescued Oscar Klein's paper from the anonymity of the 
Proceedings of the International Institute of Intellectual Cooperation of Paris, 
and we learnt of his anticipation of a theory similar to Yang-Mills-Shaw's 
long before these authors. As I indicated before, the interesting point is that 

Klein was using his triplet, of two charged mesons plus the photon, not to 
describe weak interaction but for strong nuclear force unification with the 
electromagnetic-something our generation started on only in 1972-and not 
yet experimentally verified. Even in this recitation I am sure I have inadvertantly 
left ofTsome names of those who have in some way contributed to SU(2) XU( I). 
Perhaps the moral is that not unless there is the prospect of quantitative 
verification, does a qualitative idea make its impress in physics. 

And this brings me to experiment, and the year of the Gargamellef 49). I still 
remember Paul Matthews and I getting off the train at Aix-en-Provence for 
the 1973 European Conference and foolishly deciding to walk with our rather 
heavy luggage to the student hostel where we were billeted. A car drove from 
behind us, stopped, and the driver leaned out. This was Musset whom I did 
not know well personally then. He peered out of the window and said: "Are 
you Salam?" I said "Yes". He said: "Get into the car. I have news for you. 
We have found neutral currents." I will not say whether I was more relieved 
for being given a lift because of our heavy luggage or for the discovery of 
neutral currents. At the Aix-en-Provence meeting that great and modest man, 
Lagarrigue, was also present and the atmosphere was that of a carnival-at 
least this is how it appeared to me. Steve Weinberg gave the rapporteur's talk 
with T. D. Lee as the chairman. T. D. was kind enough to ask me to comment 
after Weinberg finished. That summer Jogesh Pati and I had predicted proton 
decay within the context of what is now called grand unification and in the 
flush of this excitement I am afraid I ignored weak neutral currents as a subject 
which had already come to a successful conclusion, and concentrated on 
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speaking of the possible decays of the proton. understand now that proton 
decay experiments are being planned in the United States by the Brookhaven, 
Irvine and Michigan and the \Visconsin-Harvard groups and also by a 
European collaboration to be mounted in the Mont Blanc Tunnel Garage 
No. 17. The later quantitative work on neutral currents at CERN; Fermilab., 
Brookhaven, Argonne and Serpukhov is, of course, history, but a special tribute 
is warranted to the beautiful SLAC-Yale-CERN experiment[50] of I 978 which 
exhibited the effective z0-photon interference in accordance with the predictions 
of the theory. This was foreshadowed by Barkov et al's experiments[ 51] at 
Novosibirsk in the USSR in their exploration of parity violation in the atomic 
potential for bismuth. There is the apocryphal story about Einstein, who was 
asked what he would have thought if experiment had not confirmed the light 
deflection predicted by him. Einstein is supposed to have said, "Madam, I 
would have thought the Lord has missed a most marvellous opportunity." 
I believe, however, that the following quote from Einstein's Herbert Spencer 
lecture of 1933 expresses his, my colleagues' and my own views more accurately. 
"Pure logical thinking cannot yield us any knowledge of the empirical world; 
all knowledge of reality starts from experience and ends in it." This is exactly 
how I feel about the Gargamelle-SLAC experience. 

III. THE PRESENT AND ITS PROBLEMS 

Thus far we have reviewed the last twenty years and the emergence of 
SU (2) XU ( 1), with the twin developments of a gauge theory of basic interactions, 
linked with internal symmetries, and of the spontaneous breaking of these 
symmetries. I shall first summarize the situation as we believe it to exist now and 
the immediate problems. Then we turn to the future. 
1. To the level of energies explored, we believe that the following sets of particles 

are "structureless" (in a field-theoretic sense) and, at least to the level of 
energies explored hitherto, constitute the elementary entities of which all 
other objects are made. 

SUc(3) triplets 

Family I quarks {UR, Uy, Ue} 
dR,dy,de 

leptons ( :·) SU (2) doublets 

Family II quarks {CR, Cy, Ce} leptons (.;') " 
SR, Sy, So 

Family III quarks { IR, ly, le } 
bR, by, bs 

( v,) " leptons r 

Together with their antiparticles each family consists of 15 or 16 two-component 
fermions ( 15 or 16 depending on whether the neutrino is massless or not). 
The third family is still conjectural, since the top quark (tR, ty, t8 ) has not yet 
been discovered. Does this family really follow the pattern of the other two? 
Are there more families? Does the fact that the families are replicas of each 
other imply that Nature has discovered a dynamical stability about a system 
GFT - CC 
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of 15 (or 16) objects. and that by this token there is a more basic layer of 
structure underneath?[52) 
2. ~ote that quarks come in three colours: Red (R). Yellow (Y) and Blue (B). 

Parallel with the electroweak sL· (2) x L' (I). a gauge field; theory (SC, (3)) of 

strong (quark) interactions (quantum chromodynamics. QCD)[ 53 ] has 

emerged which gauges the three colours. The indirect discon·ry of the 
(eight) gauge bosons associated with QC:D (gluons). has already been 
surmised by the groups at DESYJ5·l] 

3. All known baryons and mesons are singlets of colour SL', (3). This has led 
to a hypothesis that colour is always confined. One of the major unsolved 

problems of field theory is to determine if QCD-treated non-pertur­

batively-is capable of confining quarks and gluons. 

4. In respect of the electroweak SU(2)XC(l), all known experiments on weak 
and electromagnetic phenomena below I 00 GeV carried out to date agree 
with the theory which contains one theoretically undetermined parameter 
sin 20 = 0.230±0.009.l 55 J The predicted values of the associated gauge boson 
(\rV± and Z0

) masses are: mw = 77-84 Ge\/, mz = 89---95 GeV, for 
0.25 ~ sin20 ~ 0.21. 

5. Perhaps the most remarkable measurement in electroweak physics is that of 

the parameter p = ( mw ) 'l. Currently this has been determined from the 
mz cos8 

ratio of neutral to charged current cross-sections. The predicted value P = I 
for weak iso-doublet Higgs is to be compared with the experimental"' 
p = 1.00±0.02. 

6. Why does Nature favour the simplest suggestion in SU(2)XU(l) theory 
of the Higgs scalars being iso-doublet?·i Is there just one physical H~ggs? 

1 
"To my mind the most striking feature of theoretical physics in the last thirty-six years is the 

fact that not a single new theoretical idea of a fundamental nature has been suc-cessful. The 
notions of relati\'istic quantum theory . . . ha\·e in every instann· pro\'ed stronger than the 
re\'olutionary ideas ... of a great number of talented physicists. \\"(' liw in a dilapidated houst' 
and we seem to be unable to move out. The dilll·rence between this house and a prison is 
hardly noticeable"-Res Jost ( 1963) in Praise of Quantum Field Theory (Siena European 
Conference). 
1 
The one-loop radiative corrections lop suggest that the maximum mass of leptons contributing 

top is less than JOO Ge\'_[56) 

-, To reduce the arbitrariness of the Higgs couplings and 10 moti\'ate their iso-doublet drnrac1er, 

one suggestion is lo use supcrsymmctry. Supcrsymmctry is a Fermi-Bose symmetry, so that iso­

douhlet leptons like (vr, e) or (vµ. µ) in a supersymmetric theory must he a<"Companied in the 
same multiplet by iso-doublct Higgs. 

:\lternativt'ly, one may identify the Higgs as composite fields associated with hound states of a 
vet new level of elementary particles and nt"w (so-called techni-colour) forces (Dimopoulos & 

Susskindf 571, Weinberg[ SR) and '1 Hooft) of which, at present low energies, wt• haw no cognisann· 

and which may manifest themsclws in the 1-100 Te\' range. Unfortunately, both these ideas at 
first sight appear to introduce complexities, though in the context of a wider theory. which spans 

energy scales upto much higher masses, a satisfactory theory of tht• Higgs phenomena. incorporating 

these, may well emerge. 
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Of what mass? At present the Higgs interactions with leptons, quarks as 
well as their self-interactions are non-gauge interactions. For a three-family 
(6-quark) model, 21 out of the 26 parameters needed, are attributable to the 
Higgs interactions. Is there a basic principle, as compelling··and as 
economical as the gauge principle, which embraces the Higgs sector? 
Alternatively, could the Higgs phenomenon itself be a manifestation of a 
dynamical breakdown of the gauge symmetry."1 

7. Finally there is the problem of the families; is there a distinct SU (2) for 
the first, another for the second as well as a third SU (2), with spontaneous 
symmetry breaking such that the SU (2) apprehended by present experiment 
is a diagonal sum of these "family" SU(2)'s? To state this in another way, 
how far in energy does thee-µ universality (for example) extend? Are there 
morel 59] Z11's than just one, effectively differentially coupled to thee and the 
µsystems? (If there are, this will constitute mini-modifications of the theory, 
but not a drastic revolution of its basic ideas.) 

In the next section I turn to a direct extrapolation of the ideas which 
went into the electroweak unification, so as to include strong interactions as 
well. Later I shall consider the more drastic alternatives which may be 
needed for the unification of all forces (including gravity)-ideas which have 
the promise of providing a deeper understanding of the charge concept. 
Regretfully, by the same token, I must also become more technical and 
obscure for the non-specialist. I apologize for this. The non-specialist may 
sample the flavour of the arguments in the next section (Sec. IV), ignoring 
the Appendices and then go on to Sec. V which is perhaps less technical. 

IV. DIRECT EXTRAPOLATION FROM THE ELECTROWEAK 
TO THE ELECTRONUCLEAR 

4. I The three ideas 

The three main ideas which have gone into the electronudear-also called 
grand-unification of the electroweak with the strong nuclear force (and 
which date back to the pe.riod 1972-1974), are the following: 
1. First: the psychological break (for us) of grouping quarks and leptons in the 

same multiplet of a unifying group G, suggested by Pati and myself in 
1972(60). The group G must contain SU(2)XU(l)XSU(.(3); must be 

simple, if all quantum numbers (flavour, colour, lepton, quark and family 
numbers) are to be automatically quantized and the resulting gauge theory 
asymptotically free. 

2. Second: an extension, proposed by Georgi and Glashow (1974)lblJ which 
places not only (left-handed) quarks and leptons but also their antiparticles 
in the same multiplet of the unifying group. 

Appendix I displays some examples of the unifying groups presently 
considered. 

Now a gauge theory based on a "simple" (or with discrete symmetries, a 
"semi-simple") group G contains one basic gauge constant. This constant 
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would manifest itself physically above the "grand unification mass" M, 
exceeding all particle masses in the theory-these themselves being 
generated (if possible) hierarchially through a suitable spontaneous 

symmetry-breaking mechanism. 
3. The third crucial development was by Georgi, Quinn and \'\'cinberg 

( 1974)f 62) who showed how, using renormalization group ideas. one could 
relate the observed low-energy couplings a(µ.), and as(µ.) (µ.-100 Ge V) to the 
magnitude of the grand unifying mass M and the observed \·aluc of 
sin 28(µ.); (tan8 is the ratio of the U( l) to the SU(2) couplings). 

4. If one extrapolates with Jowett';, that nothing essentially new can possibly 

be discovered-i.e. one assumes that there are no new features, no new 

forces, or no new "types" of particles to be discovered, till we go beyond the 
grand unifying energy M-then the Georgi, Quinn, Weinberg method leads 
to a startling result: this featureless "plateau" with no "new physics" 
heights to be scaled stretches to fantastically high energies. More precisely, 
if sin 28(µ.) is as large as 0.23, then the grand unifying mass M cannot be 
smaller than 1.3X 10•:i GevJ63] (Compare with Planck mass mp= I .2X 1019 

GeV related to Newton's constant where gravity must come in.) 7 The result 
follows from the formula[63], [64] 

I la fn M = sin
2
8(M)-sin

2
8(µ) (I) 

3n µ cos28( M) ' 
if it is assumed that sin 28(M)-the magnitude ofsin28 for energies of the order 
of the unifying mass M-equals 3/8 (see Appendix II). 

This startling result will be examined more closely in Appendix I I. I show 
there that it is very much a consequence of the assumption that the SU (2) XU( I) 
symmetry survives intact from the low regime energiesµ right upto the grand 
unifying mass M. I will also show that there already is some experimental 
indication that this assumption is too strong, and that there may be likely peaks 
of new physics at energies of IO TeV upwards (Appendix II). 

1

' The uni\'ersal urge to extrapolate from what we know to-day and to believe that nothing new 
can possibly be discovered, is well expressed in the following: 

"I come first, My name is.Jowett 

I am the Master of this College, 

Everything that is, I know it 

If I don't, it isn't knowledge" 

-The Balliol Masque. 

On account of the relati\'c proximity of M = 1011 GcV to m 1• (and thr hopr of <>Wntual 

unification with gra\·ity), Planck mass ml' is now the accepted "natural" mass scalr in Partidt· 

Physics. \\.ith 1his large mass as 1hr input, the great unsolved problrm of Grand Unification is the 

"natural" emrrg<>rH"<' of mass hi<>rarchirs (ml', amr, a 2m .. , ... ) or mr t•xp(-<.·1,/a), where <.·.,'s 
are constants. 
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4.2 Tests <!f electronuclear grand unification 
The most characteristic prediction from the existence of the ELEC­

TRONlrC:LE:\R frm-e is proton decay. first discussed i~ the context of grand 

unification at the :\ix-en-PrO\·ence Conference ( l 973)[6:>J. For "semi-simple" 

unifying groups with multiplets containing quarks and leptons··only, (but no 

antiquarks nor antileptons) the lepto-quark composites have masses (deter­

mined by renormalization group arguments). of the order of== 105-106 

Ge\'[ ()fi)_ For such theories the characteristic proton decays (proceeding 

through exchanges of three lcpto-quarks) conserve quark number+ lepton 

number. i.e. P = qqq~ftf. Tp -- I0:!''-1031 vears. On the contrary, for the 
''simple" unif~·ing family groups like SU(5)[61} or SO( 10)[67] (with multiplets 

containing antiquarks and antileptons) proton decay proceeds through an 

exchange of one lepto-quark into an antilcpton (plus pions etc.) (P-4f). 
An intriguing possibil~ty in this context is that investigated recently for the 

maximal unifying group SU ( 16)-the largest group to contain a 16-fold 
fermionic (q. f. q, °l). This can permit four types of decay modes: P~3l' 
as well as P~l. P~e (e.g. P~e- +n+ +n+) and P~3t (e.g. N~3v+n°, 
r~2v+c + +.n°). the relatin· magnitudes of these alternative decays being 

model-depcndc-nt on how precisely SU ( 16) breaks down to SU (3) x SU (2) X 

U (I)· Quite dearly. it is the central fact of the existence of the proton decay 

for which the present generation of experiments must be designed, rather than 

for any specific type of decay modes. 

Finally, grand unifying theories predict mass relations like:l68) 

md = ms = mb =::: 2.8 
me mµ m 1 

for 6 (or at most 8) flavours below the unification mass. The important remark 

for proton decay and for mass relations of the above type as well as for an 

understanding of baryon excess[69] in the Universe8
, is that for the present 

these are essentia/(;1 dzaracten.stic of the fact of grand unification-rather than of specific 
models. 

"Yet each man kills the thing he loves" sang Oscar Wilde in his famous 
Ballad of Reading Gaol. Like generations of physicists before us, some 

Ill our generation also (through a direct extrapolation of the electroweak 

gauge- methodology to the electronuclear)-and with faith in the assumption of 

11 TI H" calculation of baryon excess in the l'niwrse-arising from a combination of CP and 

baryon number violations-has recently been claimed to provide teleological arguments for 

.l{rand unification. For example. ~anopoulosf70) has suggested that the ''existt'nce of human 

beings lo nwasure the ratio n11/ny (whrre 11 8 is the numbers of baryons and ny the numbers of 

photons in the l "nin·rs<") necessarily imposes severe bounds on this quamity: i.e. 10- 11 = (mr/mp) 111 

< 1111/11>' < Ill 1 
( = O(a:)) ". Of importance in dc·riving these constraints are the upper (and 

lower) hound on the numbers of flavours(= 6) d«duced (1) from mass relations above, (2) from 
l'osmological argum«nts which seek to limit the numbers of massless neutrinos, (3) from asymptotic 

freedom and (4) from numerous (one-loop) radiative calculations. It is dear that lack of 

accc-lerators as we move up in energy scale will force particle physics to reliance on teleology and 
cosmology (which in Landau's famous phrase is "oflcn wrong, but never in doubt"). 
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no "new physics", which leads to a grand unifying mass - l0
11 

Ge\·-are 
beginning to believe that the end of the problems of elenH'ntarity as well as of 

fundamental forces is nigh. They may be right. but before we are carried 
away by this prospect. it is worth stressing that e\Tn for the simplest grand 
unifying model (Georgi and Glashow's SC(5) with just two Higgs (a 5 and 
a 24) ), the number of presently ad hoc parameters needed by the model is 
still unwholesomely large-22, to compare with 26 of the six-quark model 
based on the humble SU (2) XV (I) X SC.(3). \\'e cannot feel proud. 

V. ELEMENTARITY: U~IFICATIO~ WITH GRA\TfY :\~D 
NATURE OF CHARGE 

In some of the remaining parts of this lecture I shall be questioning two of the 
notions which have gone into the direct extrapolation of Sec. IV-first, do 
quarks and leptons represent the correct elementary'' fields, which should 
appear in the matter Lagrangian, and which are structureless for re­
normalizaibility; second, could some of the presently considered gauge fields 
themselves be composite? This part of the lecture relies heavily on an address 

I was privileged to give at the European Physical Society meeting in Geneva 
injuly this yearJ64J 

5.1 The quest for elementarily, prequarks (preons and pre-preons) 
If quarks and leptons are elementary, we arc dealing with 3 X 15 = 45 elementary 
entities. The "natural" group of which these constitute the fundamental 
representation is SU(45) with 2024 elementary gauge bosons. It is possible to 
reduce the size of this group to SU( 11) for example (see Appendix I). with only 
120 gauge bosons, but then the number of elementary fermions increases to 
561, (of which presumably 3 x 15 = 45 objects are of low and the rest of 
Planckian mass). Is there any basic reason for one's instinctive revulsion when 
faced with these vast numbers of elementary fields. 

The numbers by themselves would perhaps not matter so much. After all, 
Einstein in his description of gravity ,(71] chose to work with JO fields (g,,..(x)) 
rather than with just one (scalar field) as NordstromP2] had done before him. 
Einstein was not perturbed by the multiplicity he chose to introduce, since he 
relied on the sheet-anchor of a fundamental principle-(the equivalence 

principle)-which permitted him to relate the 10 fields for gravity gµ,, with thr 

10 components of the physically relevant quantity, the tensor T 1,.. of energy 
and momentum. Einstein knew that nature was not economical <!.f structures: only of 
principles of fundamental applicability. The question we must ask ourselves 
is this: have we yet discovered such principles in our quest for clementarity, 
to justify having fields with such large numbers of components as elementary. 

"I would likr to quotr f<'ynman in a recent int<'n·i<'w to the "Omni" magazin<': ":\s long as it 

looks like thr way things arC' huilt with whl'rls within wheels. then you ar(' looking for dw 

innermost wheel-but it might not be tha1 way, in \\'hich case you arl' looking for whatt'\Tr lhl' 

hell il is you find!". In the same intC'r\'irw hr remarks "a few years ago I was \'cry sceptical ahoul 

the gauge theories ... I was rxprcting mist. and now· it looks likr ridges and valkys after all.'' 
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Recall that quarks carry at least three charges (colour, flavour and a family 
number). Should one not, by now, entertain the notions of quarks (and 
possibly of leptons) as being composites of some more basic entities 10 (PRE­
QL'.-\RKS or PREO:\S). which each carry but one basic charge[5~]. These 

ideas han· het'n expressed before but they ha\·e become more compulsive now, 

with the growing multiplicity of quarks and leptons. Recall that it was similar 

ideas \-.,foch led from the eight-fold of baryons to a triplet of (Sakatons and) 
quarks in the first place. 

The preon notion is not new. In 1975. among others, Pati, Salam and 
Strathdeel 52) introduced 4 chromons (the fourth colour corresponding to the 

lepton number) and 4 flanms, the basic group being SU(8)-of which the 

family group SCF(4)XSUc(4) was but a subgroup. :\s an extension of these 

ideas, we now beliew these prcons carry magnetic charges and are bound 

together by n-ry strong short-range forces, with quarks and leptons as their 
magnetically neutral compositcsl73]. The important remark in this context is 
that in a theory containing both electric and magnetic generalized charges, the 
analogues of the well-knmvn Dirac quantization condition[74] gives relations 

l.k ~ n . 1 e {Jr = 2 for the strength of the two types of charges. Clearly, magnetic 

monopoles 11 of strength ±g and mass = m"/d :::::::: I 01 Ge V, are likely to bind 

much more tightly than electric cha~·ges, yielding composites whose non­

clcmcntary nature will reveal itself or~ly for \·ery high energies. This appears 

to he the situation at least for leptons if they are composites. 

In another form the prcon idea has been revived this year by Curtwright and 
Freund[52J. who motivated by ideas of extended supergravity (to be discussed 
in the next subsection), reintroduce an SU(8) of3 chromons (R, Y, B), 2 flavons 
and 3 familons (horrible names). The family group SU(S) could be a subgroup 

of this SU(8). In the Curtwright-Freund scheme, the 3x 15 = 45 fermions of 

SU(5)[6 l] can be found among the 8+28+56 of SU(8) (or alternatively the 

3X 16 == 48 of SO( 10) among the vectorial 56 fermions of SU(8)). (The next 
succession after the preon level may be the pre-preon level. It was suggested 
at the Geneva Confercnce[64] that with certain developments in field theory 

of composite fields it could be that just two-prcons may suffice. But at this 
stage this is pure speculation.) 

Before I conclude this section, I would like to make a prediction regarding 
the course of physics in the next decade, extrapolating from our past experience 
oft lw decades gone by: 

'" ( lnt· muse emphasise howner that zero mass ncmrinos are the hardest ol~jects to concci\'c of as 
1 "lllp11si1c·s. 
It 

.\nording lo '1 Hooll's tlworem. a monopolt• corresponding to the Sl'i('.?) gauge symmetry is 

1·'1w ·1 ·I . I h I 1· . 111
" ( 7'"Jj 17611· . · I I 1· d 1 1 < 111 posst·ss a mass w11 1 t e owt·r 1rn1t -. · • ·,,·en 11 sue l monopo es are con lilt' • 

a 

tlwir indirt'ct dlc:cts must manili.·st thl'mselves. if the\· <·xisl. (:\otc that m\, is \'<•n· much a lower . a . 

l111lit. For a grand 1111ifil'd theory like SL" (5) for which the monopole mass is a· 1 times the heavy 

lt-pto-quark mass.) The munopolt• IOr<"l' may ht• tht' tcdrni-nilour force of Footnote.'>. 
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1950--1960 1960--1970 

The strange The 8-fold 

particles way. Q-

SC(3) 

rl'sonances 

Hit the next level 
of elementarily 

with quarks 

1970-1980 

Confirmation 

of neutral 

currt'nts 

5.2 Post-Planck physics, supergravity and Einstein's dreams 

l~IHO-

\\'. z. 
Proton dee a y 

(;rand l·nilication. 

Tribal Groups 

~lay hit th<' preon 
level. and composite 

structure of quarks 

I now turn to the problem of a deeper comprehension of the charge concept 
{the basis of gauging)-which, in 11ry humble view, is the real quest of particle 

physics. Einstein, in the last thirty-five years of his life lived with two dreams: 
one was to unite gravity with matter (the photon)-he wished to sec the .. base 
wood" (as he put it) which makes up the stress tensor T1"' on the right-hand 

side of his equation Rµv-~ gµv R = -Tµv transmuted through this union, into 

the "marble" of gravity on the left-hand side. The second (and the comple­
mentary) dream was to use this unification to comprehend the nature of 
electric charge in terms of space-time geometry in the same manner as he had 
successfully comprehended the nature of gravitational charge in terms of space­
time curvature. 

In case some one imagines 12 that such deeper comprehension is irrelevant 
to quantitative physics, let me adduce the tests of Einstein's theory versus the 
proposed modifications to it (Brans-Dicke[77] for example). Recently ( 1976), 
the strong equivalence principle (i.e. the proposition that gravitational forces 
contribute ~qually to the inertial and the gravitational masses) was tested i:~ to 
one part in l 0 12 (i.e. to the same accuracy as achieved in particle physics for 
(g-2)e) through lunar-laser ranging measuremcnts[78J. These measurements 
determined departures from Kepler equilibrium distances, of the moon, the 
earth and the sun to better than ±30 ems. and triumphantly vindicated Einstein. 

There have been four major developments in realizing Einstein's dreams: 
1. The Kaluza-Klein[79] miracle: An Einstein Lagrangian (scalar curvature) 

in five-dimensional space-time (wht>re the fifth dimension is compactificd in 

12 Th<· following quotation from Einstein is rele\·ant here. "\\'e now realize, with spt'cial clarity. 

how much in <·rror arc thost' throrists who hf'lie\'t' theory comes inducti,·dy from experienn· 

Ev('n the great '.\i('wton could not frer himself from this t·rror (Hypotheses non lingo)." This 

quote is complementary to thl' quotation from Einstein at the <'nd of Sec. 11. 
11 The weak equivalence prirn·iple (tlw proposition that all but th<' gravitational fr1rcc con1rihu1e 

equally to the inertial and tht' gravitational masses) was wrified by Ei)tvos to I : 10
8 and by 

Dicke and Braginsky and Pa nm· ro I : I 0 12
• 
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the sense of all fields being explicitly independent of the fifth co-ordinate) 
precisely reproduces the Einstein-Maxwell theory in four dimensions, the gµ 5 

(µ = 0, I. 2. 3) components of the metric in five dimensions being identified 
with the ~laxwell field Aw From this point of view, Maxwell's field is 

associated \Vith the extra components of curvature implied PY the 
(conct:ptual) existence of the fifth dimension. 

'.L The second development is the recent realization by Cremmer, Scherk, 
Englert, Brout, ~linkowski and others that the compactification of the 
extra dimcnsions[BO]_(their curling up to sizes perhaps smaller than Planck 
length ::5 IO- n ems. and the very high curvature associated with them)­
might arise through a spontaneous symmetry breaking (in the first 10-43 

seconds) which reduced the higher dimensional space-time effectively to 

the four-dimensional that we apprehend directly. 
3. So far we have considered Einstein's second dream, i.e. the unification of 

of electromagnetism (and presumably of other gauge forces) with gravity, 
giving a space-time significance to gauge charges as corresponding to 
extended curvature in extra bosonic dimensions. A full realization of the 
first dream (unification of spinor matter with gravity and with other gauge 
fields) had to await the development of supergravit}'.'.[81], [821-and an 

extension to extra fermionic dimensions of superspacef83] (with extended 
torsion being brought into play in addition to curvature). I discuss this 
development later. 

4. And finally there was the alternative suggestion by Wheelerf84] and 
Schemberg that electric charge may be associated with space-time 
topology-with worm-holes, with space-time Gruyere-cheesiness. This idea 
has recently been developed by Hawking 14 and his collaborators[85J. 

5.3 Extended supergravity, SU(B) preons and composite gauge fields 
Thus far I have reviewed the developments in respect of Einstein's dreams as 
reported at the Stockholm Conference held in 1978 in this hall and organized 
by the Swedish Academy of Sciences. 

A remarkable new development was reported during 1979 by Julia and 
Cremmcr[87] which started with an attempt to use the ideas of Kaluza and 
Klein to formulate extended supergravity theory in a higher (compactified) 
spacetime-more precisely in eleven dimensions. This development links up, 
~s we shall see, with preons and composite Fermi fields-and even more 
important-possibly with the notion of composite gauge fields. 

Recall that simple supergravityf 81] is the gauge theory of super­
symmetry[88]_the gauge particles being the (helicity ±2) gravitons and 

11 

Tht' Einstein Langrangian allows large nuctuations of metric and topology on Planck-length 
'ical<'. Hawking has surmised that the dominant contributions to the path integral of quantum 
gravity come from metrics which carry one unit of topology per Planck \'olume. On account of the 
intimate connection (de Rham, Atiyah-Singer)(B6) of curvature with the measures of space-time 
topology (Euler numbt'r, Pontryagin number) the extended Kaluza-Klein and Wht'eler-Hawking 
points of view may find consonance after all. 
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(hclicity ±~) gravitinos ,.,_Extended super.f!.mri{l' gauges supersymmctry combined 

with SO(~) internal symmetry. For>:= 8. the (tribal) stqwrgra\ity multiplet 

consists of the following S0(8) families:(Bl J. (87J 

Hclicity ±2 
') 

+.:_ B -2 
±I 28 

I 
56 +-

-2 

0 70 

As is well known, S0(8) is too small to contain SC(2)xC(l)XSC,(]). Thus 
this tribe has no place for \\':: (though Z" and y are contained) and no places 

forµ or Tor the t quark. 
This was the situation last year. This year. Cremmer andj ulial87] attempted 

to write down the>; = 8 supergravity Langrangian explicitly, using an extension 
of the Kaluza-Klein ansatz which states that extended supergraz•il)• (with S0(8) 

internal symmetry) has the same Lagrangian in four space-time dimensions as 

simple supergraz·i~y in (compactificd) eleven dimensions. This formal-and rather 
formidable ansatz-when carried through yielded a most agreeable bonus. 
The supergravity Lagrangia11 possesses an unsuspected SU ( 8) "local" internal S)'mmetry 
although one started with an internal S0(8) only. 

The tantalizing questions which now arise are the following. 
1. Could this internal SU (8) be the symmetry group of the 8 prcons (3 

chromons, 2 flavons, 3 familons) introduced earlier? 
2. When SU (8) is gauged, there should be 63 spin-one fields. The supergravity 

tribe contains only 28 spin-one fundamental objects which arc not 
minimally coupled. Are the 63 fields of SU (8) to be identified with composite 
gauge fields made up of the 70 spin-zero objects of the form y- i a,, V; Do 
these composites ~ropagate, in analogy with the well-known recent result in 
cpn- I theoriesl89], where a composite gauge field of this form propagates 

as a consequence of quantum effects (quantum completion)? 

The entire development I have described-the unsuspected extension of 

SO (8) to SU (8) when extra compactificd space-time dimensions are used-and 

the possible existence and quantum propagation of composite gauge fields-is 
of such crucial importance for the future prospects of gauge theories that one 
begins to wonder how much of the extrapolation which took SU (2) XU (I) X 

1
' Supcrsymmctry algebra extends Poinrarr group algebra hy adjoining to it suprrsymnwtric 

charges Q,, which transform bosons to fermions. {Q,,. Qµ} = (y1,P1
,),.p. The currents which 

n>rrcspon<l to these chargl's (Q,, and P,.) are .),.,. and T"'.-tlwsc arc essentially the currents 

which in gauge<l supersymnwtry (i.t'. supngravity) couple to the gravitino and the graviton. 

respertiHly. 
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Sl1
, (3) into the clcctronuclear grand unified theories is likely to remain 

unaficned by these m·w ideas now unfolding. 
But where in all this is the possibility to appeal directly to experiment? 

For grand unified theories. it was the proton decay. What is the an~logue for 

supergra,·ity? Perhaps the spin ~ massive gravitino, picking its mass from 

a super-Higgs effect[90) provides the answer. Fayetf9 I] has shown that for a 
spontaneously broken globally supersymmetric weak theory the introduction 
of a local gra,·itational interaction leads to a super-Higgs effect. Assuming 
that supcrsymmctry breakdown is at mass scale mw. the gravitino acquires a 
mass and an effective interaction, but of conventional weak rather than of the 
gra,·itational strength-an enhancement by a factor of IO:H. One may thus 

search for the gravitino among the neutral decay modes of J hp-the predicted 
rate being 10-:i_IO-~' times smaller than the observed rate for j/tp~e+e-. This 
will surely tax all the ingenuity of the great men (and women) at SLAC and 
DESY. Another effect suggested by Scherkf92] is antigravity-a cancellation 
of the attractive gravitational force with the force produced by spin-one gravi­
photons which exist in all extended supergravity theories, Scherk shows that 
the Compton wave length of the gravi-photon is either smaller than 5 ems. or 
comprised between IO and 850 metres in order that there is no conflict with 

what is presently known about the strenght of the gravitational force. 

Let me summarize: it is conceivable of course, that there is indeed a grand 
plateau--extending even to Planck energies. If so, the only eventual laboratory 
for particle physics will be the Early Universe, where we shall have to seek for 
the answers to the questions on the nature of charge. There may, however, be 
indications of a next level of structure around IO TeV; there are also beautiful 
ideas (like, for example, of electric and magnetic monopole duality) which may 
manifest at energies of the order of a- 1 mw ( = I 0 Te V). Whether even this level 
of structure will give us the final clues to the nature of charge, one cannot 
predict. All I can say is that I am for ever and continually being amazed at the 
depth revealed at each successive level we explore. I would like to conclude, as I 
did at the 1978 Stockholm Conference, with a prediction which J. R. 
Oppenheimer made more than twenty-five years ago and which has been 
fulfilled to-day in a manner he did not live to see. More than anything else, 
it expresses the faith for the.future with which this greatest of decades in particle 
physics ends: "Physics will change even more ... If it is radical and unfamiliar 

· · · we think that the future will be only more radical and not less, only more 
strange and not more familiar, and that it will have its own new insights for 
the inquiring human spirit." 

J. R. Oppenheimer 
Reith Lectures BBC 1953 
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APPENDIX I. EXAMPLES OF GRA:\'D UNIFYING GROCPS 

Semi-simple groups* 

(with left-right symmetry) 

Example (SL.(6)• x 
SC(6),]r.-R 

.Hultiplet Exo/u gauge part1dt1 

G,-(~) 1.' Cw-~(;) R Lq>w-quarks-((j/) 

(; = G 1 XGu l 'nif~·ing mass 
~ Io'' (;1·\· 

Simple .i:roups 
Examples 

Familygroups-{Sl'(5) {SO(IO) ~· ;) 1 or ! (,- -
Tribal groups- SC( 11) S0(22) t 

L 

Diquarks--.(qq) 
l>ilq>t11ns-.r( () 

l.epto-quarks-.((jf). 

(ql) 

l' nil~·ing mass 

~ 1011 -10 1
" (;c\· 

APPENDIX II 

l'r11ton dt((~)' 

I .rpto-q ua rks-\\' 

+I Higgs) or 

Pro11111 = qqq-f ff 

qq---.(jt i.r. 

Proton I' = qqq-.f 
;\lso possible. 

P-f. P-:V. 
P-:u 

The following assumptions went into the derivation of the formula (I) in the text. 

a) SC I.(2) XU L.R( I) survives intact as the electroweak symmetry group from 

energies ::::: µ right upto M. This intact survival implies that one eschews, for 

example, all suggestions that i) low-energy SU 1.(2) may be the diagonal sum of 

SUL(2), su:!(2), sv:! 1(2), where I, II, III refer to the {three?) known families; 

ii) or that the U L.R( I) is a sum of pieces, where UR( l) may have differentially 
descended from a (V+A)-symmetric SUR(2) contained in G, or iii) that U(I) 

contains a piece from a four-colour symmetry SU('( 4) (with lepton number as 

the fourth colour) and with SUc(4) breaking at an intermediate mass scale to 
SUr(3) x Uc( I). 

b) The second assumption which goes into the derivation of the formula 

above is that there are no unexpected heavy fundamental fermions, which might 

make sin 28(M) differ from ~-its value for the low mass fermions presently 
8 

known to exist.+ 

* Grou~ing. q~a.rks (q) and l~·p.tons ( f) .together. im,~l!es 1r~~t~ng lepton mm1h:r. ~s the fou~th 
colour. 1.e. SL,(3) exlends to SL,(4) (Pau and Salam) J3J. :\ I nbal group. by dd1111t1on. co111a111s 

all known families in its basic representation. Fa\'ourcd rrpr<'srntations of Tribal SL'( 11) 

(Georgi)[9-t.J and Tribal S0(22) (Gdl-Mann1 95J el al.) rnntai11 561 and 2048 krmions! -
.. If one does 1101 know G, 011e way to infer the parameter sin 20(M) is from the formula: 

. 10 ( "1 - .l:T ! II (- <j '.'\ .• ( + J :'\ t ) 
SIJl '" ) - ' - . .l:(.l• 20 1':,,+ 12 '.'\, 

Hcr<' '.'.:,,and '.'\, ar<' th<' numbers of lh<' fundanw111al quark and lt'pton SL' (:l) doublets (assumiru.; 

thrs<' are the only muhiple1s that <'xist). Ir we mak<' 1hr furtht·r a.1.mmption 1hat l\: 11 = '.'\ 1 (from the 

n-quir<'lllC'lll of anomaly <'an<'dlatiou he1wcc·n quarks and lep1ons) W<' obtain sin 18( !'\1) = ~· This 

assumption howr\'er is nol compulsi\'<'; for example anomalies cancel also if (hea\'y) mirror 

tt·rmions existl 98 J. This is the case for ISL'(fl)j' for which sin'O(M) = ;~. 
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c) If these assumptions are relaxed, for example, for the three family group 

G = [SL' i:{6) xSUA6) k-R, where sin 28(M) =:a, we find the grand unifying 

mass :\1 tumbles down to 106 GeV. 

d) The introduction of intermediate mass scales (for example, those 

connoting the breakdown of family universality, or of left-right symmetry, or 
ofa breakdown of-1--colour SVc(4) down to SUc(3)XUl.(l)) will as a rule push 
the magnitude of the grand unifying mass ~I upwards[96]. In order to secure a 

proton decay life. consonant with present empirical lower limits (- 10
30 

years)[ 97 ] this is desirable anyway. (Tproron for M - 10 13 GeV is unacceptably 
low -- 6X lOn years unless there are 15 Higgs.) There is, from this point of 

view, an indication of there being in Particle Physics one or several intermediate 

mass scales which can be shown to start from around 104 GeV upwards. This 
is the end result which I wished this Appendix to lead up lo. 
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TOWARDS A UNIFIED THEORY-THREADS IN 
A TAPESTRY 

Nobel Lecture, 8 December, I 979 
by 
SHELDON LEE GLASHOW 
Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA 

INTRODUCTION 

In 1956, when I began doing theoretical physics, the study of elementary 
particles was like a patchwork quilt. Electrodynamics, weak interactions, 
and strong interactions were clearly separate disciplines, separately taught 
and separately studied. There was no coherent theory that described them 
all. Developments such as the observation of parity violation, the successes 
of quantum electrodynamics, the discovery of hadron resonances and the 
appearance of strangeness were well-defined parts of the picture, but they 
could not be easily fitted together. 

Things have changed. Today we have what has been called a "standard 
theory" of elementary particle physics in which strong, weak, and electro­
magnetic interactions all arise from a local symmetry principle. It is, in a 
sense, a complete and apparently correct theory, offering a qualitative 
description of all particle phenomena and precise quantitative predictions 
in many instances. There is no experimental data that contradicts the 
theory. In principle, if not yet in practice, all experimental data can be 
expressed in terms of a small number of "fundamental" masses and cou­
pling constants. The theory we now have is an integral work of art: the 
patch work quilt has become a tapestry. 

Tapestries are made by many artisans working together. The contribu­
tions of separate workers cannot be discerned in the completed work, and 
the loose and false threads have been covered over. So it is in our picture 
of particle physics. Part of the picture is the unification of weak and 
electromagnetic interactions and the prediction of neutral currents, now 
being celebrated by the award of the Nobel Prize. Another part concerns 
the reasoned evolution of the quark hypothesis from mere whimsy to 
established dogma. Yet another is the development of quantum chromo­
dynamics into a plausible, powerful, and predictive theory of strong inter­
actions. All is woven together in the tapestry; one part makes little sense 
without the other. Even the development of the electroweak theory was 
not as simple and straightforward as it might have been. It did not arise 
full blown in the mind of one physicist, nor even of three. It, too, is the 
result of the collective endeavor of many scientists, both experimenters 
and tl'ieorists. 

Let me stress that I do not believe that the standard theory will long 
~-00 4® 
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survive as a correct and complete picture of physics. All interactions may 
be gauge interactions, but surely they must lie within a unifying group. 
This would imply the existence of a new and very weak interaction which 
mediates the decay of protons. All matter is thus inherently unstable, and 
can be observed to decay. Such a synthesis of weak, strong, and electro­
magnetic interactions has been called a "grand unified theory", but a 
theory is neither grand nor unified unless it includes a description of 
gravitational phenomena. We are still far from Einstein's truly grand 
design. 

Physics of the past century has been characterized by frequent great but 
unanticipated experimental discoveries. If the standard theory is correct, 
this age has come to an end. Only a few important particles remain to be 
discovered, and many of their properties are alleged to be known in 
advance. Surely this is not the way things will be, for Nature must still have 
some surprises in store for us. 

Nevertheless, the standard theory will prove useful for years to come. 
The confusion of the past is now replaced by a simple and elegant synthe­
sis. The standard theory may survive as a part of the ultimate theory, or it 
may turn out to be fundamentally wrong. In either case, it will have been 
an important way-station, and the next theory will have to be better. 

In this talk, I shall not attempt to describe the tapestry as a whole, nor 
even that portion which is the electroweak synthesis and its empirical 
triumph. Rather, I shall describe several old threads, mostly overwoven, 
which are closely related to my own researches. My purpose is not so much 
to explain who did what when, but to approach the more difficult question 
of why things went as they did. I shall also follow several new threads 
which may suggest the future development of the tapestry. 

EARLY MODELS 

In the l 920's, it was still believed that there were only two fundamental 
forces: gravity and electromagnetism. In attempting to unify them, Ein­
stein might have hoped to formulate a universal theory of physics. How­
ever, the study of the atomic nucleus soon revealed the need for two 
additional forces: the strong force to hold the nucleus together and the 
weak force to enable it to decay. Yukawa asked whether there might be a 
deep analogy between these new forces and electromagnetism. All forces, 
he said, were to result from the exchange of mesons. His conjectured 
mesons were originally intended to mediate both the strong and the weak 
interactions: they were strongly coupled to nucleons and weakly coupled 
to leptons. This first attempt to unify strong and weak interactions was 
fully forty years premature. Not only this, but Yukawa could have predict­
ed the existence of neutral currents. His neutral meson, essential to pro­
vide the charge independence of nuclear forces, was also weakly coupled 
to pairs of leptons. 

Not only is electromagnetism mediated by photons, but it arises from the 
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requirement of local gauge invariance. This concept was generalized in 
I 954 to apply to non-Abelian local symmetry groups. UJ It soon became 
clear that a more far-reaching analogy might exist between electromagne­
tism and the other forces. They, too, might emerge from a gauge princi­
ple. 

A bit of a problem arises at this point. All gauge mesons must be 
massless, yet the photon is the only massless meson. How do the other 
gauge bosons get their masses? There was no good answer to this question 
until the work of Weinberg and Salam c21 as proven by 't Hooft l3J 

(for spontaneously broken gauge theories) and of Gross, Wilczek, and 
Politzer 141 (for unbroken gauge theories). Until this work was done, gauge 
meson masses had simply to be put in ad hoc. 

Sakurai suggested in 1960 that strong interactions should arise from a 
gauge principle. lsJ Applying the Yang-Mills construct to the isospin­
hypercharge symmetry group. he predicted the existence of the vector 
mesons(} and w. This was the first phenomenological SU(2) x U(l) gauge 
theory. It was extended to local SU(3) by Gell-Mann and Ne'eman in 1961. 
[G] y h f . et, t ese early attempts to formulate a gauge theory o strong mterac-
tions were doomed to fail. In today's jargon, they used "flavor" as the 
relevant dynamical variable, rather than the hidden and then unknown 
variable "color". Nevertheless, this work prepared the way for the emer­
gence of quantum chromodynamics a decade later. 

Early work in nuclear beta decay seemed to show that the relevant 
interaction was a mixture of S, T, and P. Only after the discovery of parity 
violation, and the undoing of several wrong experiments, did it become 
clear that the weak interactions were in reality V -A. The synthesis of 
Feynman and Gell-Mann and of Marshak and Sudarshan was a necessary 
precursor to the notion of a gauge theory of weak interactions. 171 Bludman 
formulated the first SU (2) gauge theory of weak interactions in 1958. rsi 

No attempt was made to include electromagnetism. The model included 
the conventional charged-current interactions, and in addition, a set of 
neutral current couplings. These are of the same strength and form as 
those of today's theory in the limit in which the weak mixing angle vanish­
es. Of course, a gauge theory of weak interactions alone cannot be made 
renormalizable. For this, the weak and electromagnetic interactions must 
be unified. 

Schwinger, as early as 1956, believed that the weak and electromagnetic 
interactions should be combined together into a gauge theory. 191 The 
charged massive vector intermediary and the· massless photon were to be 
the gauge mesons. As his student, I accepted this faith. In my 1958 
Harvard thesis, I wrote: "It is of little value to have a potentially renormali­
zable theory of beta processes without the possibility of a renormalizable 
electrodynamics. We should care to suggest that a fully acceptable theory 
of these interactions may only be achieved if they are treated together ... " 
cioJ We used the original SU(2) gauge interaction of Yang and Mills. Things 
had to be arranged so that the charged current, but not the neutral 
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(electromagnetic) current, would violate parity and strangeness. Such a 
theory is technically possible to construct, but it is both ugly and experi­
mentally false. 11 11 We know now that neutral currents do exist and that the 
electroweak gauge group must be larger than SU (2). 

Another electroweak synthesis without neutral currents was put forward 
by Salam and Ward in 1959. 1121 Again, they failed to see how to incorpo­
rate the experimental fact of parity violation. Incidentally, in a continu­
ation of their work in 1961, they suggested a gauge theory of strong, weak, 
and electromagnetic interactions based on the local symmetry group SU(2) 
x SU(2). c131 This was a remarkable portent of the SU(3) x SU(2) x U(l) 
model which is accepted today. 

We come to my own work 1141 done in Copenhagen in 1960, and done 
independently by Salam and Ward. 1151 We finally saw that a gauge group 
larger than SU (2) was necessary to describe the electroweak interactions. 
Salam and Ward were motivated by the compelling beauty of gauge 
theory. I thought I saw a way to a renormalizable scheme. I was led to the 
group SU(2) x U(l) by analogy with the approximate isospin-hypercharge 
group which characterizes strong interactions. In this model there were 
two electrically neutral intermediaries: the massless photon and a massive 
neutral vector meson which I called B but which is now known as Z. The 
weak mixing angle determined to what linear combination of SU (2) X U (I) 
generators B would correspond. The precise form of the predicted neu­
tral-current interaction has been verified by recent experimental data. 
However, the strength of the neutral current was not prescribed, and the 
model was not in fact renormalizable. These glaring omissions were to be 
rectified by the work of Salam and Weinberg and the subsequent proof of 
renormalizability. Furthermore, the model was a model of leptons-it 
could not evidently be extended to deal with hadrons. 

RENORMALIZABILITY 

In the late 50's, quantum electrodynamics and pseudoscalar meson theory 
were known to be renormalizable, thanks in part to work of Salam. Neither 
of the customary models of weak interactions - charged intermediate 
vector bosons or direct four-fermion couplings - satisfied this essential 
criterion. My thesis at Harvard, under the direction of Julian Schwinger, 
was to pursue my teacher's belief in a unified electroweak gauge theory. I 
had found some reason to believe that such a theory was less singular than 
its alternatives. Feinberg, working with charged intermediate vector me­
sons discovered that a certain type of divergence would cancel for a special 
value of the meson anomalous magnetic moment_l1&1 It did not correspond 
to a "minimal electromagnetic coupling", but to the magnetic properties 
demanded by a gauge theory. Tzou Kuo-Hsien examined the zero­
mass limit of charged vector meson electrodynamics.C17J Again, a sensible 
result is obtained only for a very special choice of the magnetic dipole 
moment and electric quadrupole moment, just the values assumed in a 
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gauge theory. Was it just coincidence that the electromagnetism of a 
charged vector meson was least pathological in a gauge theory? 

Inspired by these special properties, I wrote a notorious paper.l181 I 
alleged that a softly-broken gauge theory, with symmetry breaking provid­
ed by explicit mass terms, was renormalizable. It was quickly shown that 
this is false. 

Again, in I 970, Iliopoulos and I showed that a wide class of divergences 
that might be expected would cancel in such a gauge theory.U9l We 
showed that the naive divergences of order (aA4 )" were reduced to "mere­
ly" (aA2 )". where A is a cut-off momentum. This is probably the most 
difficult theorem that Iliopoulos or I had even proven. Yet, our labors 
were in vain. In the spring of I 971, Veltman informed us that his student 
Gerhart 't Hooft had established the renormalizability of spontaneously 
broken gauge theory. 

In pursuit of renormalizability, I had worked diligently but I completely 
missed the boat. The gauge symmetry is an exact symmetry, but it is 
hidden. One must not put in mass terms by hand. The key to the problem 
is the idea of spontaneous symmetry breakdown: the work of Goldstone as 
extended to gauge theories by Higgs and Kibble in I 964.l201 These 
workers never thought to apply their work on formal field theory to a 
phenomenologically relevant model. I had had many conversations with 
Goldstone and Higgs in I 960. Did I neglect to tell them about my 
SU (2) x U (I) model, or did they simply forget? 

Both Salam and Weinberg had had considerable experience in formal 
field theory, and they had both collaborated with Goldstone on spontane­
ous symmetry breaking. In retrospect, it is not so surprising that it was they 
who first used the key. Their SU (2)XU (I) gauge symmetry was spontane­
ously broken. The masses of the W and Z and the nature of neutral 
current effects depend on a single measurable parameter, not two as in my 
unrenormalizable model. The strength of the neutral currents was correct­
ly predicted. The daring Weinberg-Salam conjecture of renormalizability 
was proven in 1971. Neutral currents were discovered in I 973l2

1], but not 
until 1978 was it clear that they had just the predicted properties. c221 

THE STRANGENESS-CHANGING NEUTRAL CURRENT 

I had more or less abandoned the idea of an electroweak gauge theory 
during the period 1961-1970. Of the several reasons for this, one was the 
failure of my naive foray into renormalizability. Another was the emer­
gence of an empirically successful description of strong interactions - the 
SU(3} unitary symmetry scheme of Gell-Mann and Ne'eman. This theory 
was originally phrased as a gauge theory, with (}, w, and K* as gauge 
mesons. It was completely impossible to imagine how both strong and 
weak interactions could be gauge theories: there simply wasn't room 
enough for commuting structures of weak and strong currents. Who could 
foresee the success of the quark model, and the displacement of SU (3) 
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from the arena of flavor to that of color? The predictions of unitary 
symmetry were being borne out - the predicted n- was discovered in 
1964. Current algebra was being successfully exploited. Strong interac­
tions dominated the scene. 

When I came upon the SU(2)XU(l) model in 1960, I had speculated on 
a possible extension to include hadrons. To construct a model of leptons 
alone seemed senseless: nuclear beta decay, after all, was the first and 
foremost problem. One thing seemed clear. The fact that the charged 
current violated strangeness would force the neutral current to violate 
strangeness as well. It was already well known that strangeness-changing 
neutral currents were either strongly suppressed or absent. I concluded 
that the zo had to be made very much heavier than the W. This was an 
arbitrary but permissible act in those days: the symmetry breaking mecha­
nism was unknown. I had "solved" the problem of strangeness-changing 
neutral currents by suppressing all neutral currents: the baby was lost with 
the bath water. 

I returned briefly to the question of gauge theories of weak interactions 
in a collaboration with Gell-Mann in l 961.c231 From the recently develop­
ing ideas of current algebra we showed that a gauge theory of weak 
interactions would inevitably run into the problem of strangeness-chang­
ing neutral currents. We concluded that something essential was missing. 
Indeed it was. Only after quarks were invented could the idea of the 
fourth quark and the GIM mechanism arise. 

From 1961 to 1964, Sidney Coleman and I devoted ourselves to the 
exploitation of the unitary symmetry scheme. In the spring of 1964, I 
spent a short leave of absence in Copenhagen. There, Bjorken and I 
suggested that the Gell-Mann-Zweig-system of three quarks should be ex­
tended to four.l24l (Other workers had the same idea at the same time).l251 

We called the fourth quark the charmed quark. Part of our motivation 
for introducing a fourth quark was based on our mistaken notions of 
hadron spectroscopy. But we also wished to enforce an analogy between 
the weak leptonic current and the weak hadronic current. Because there 
were two weak doublets of leptons, we believed there had to be two weak 
doublets of quarks as well. The basic idea was correct, but today there seem 
to be three doublets of quarks and three doublets of leptons. 

The weak current Bjorken and I introduced in 1964 was precisely the 
GIM current. The associated neutral current, as we noted, conserved 
strangeness. Had we inserted these currents into the earlier electroweak 
theory, we would have solved the problem of strangeness-changing neutral 
currents. We did not. I had apparently quite forgotten my earlier ideas of 
electroweak synthesis. The problem which was explicitly posed in 1961 was 
solved, in principle, in 1964. No one, least of all me, knew it. Perhaps we 
were all befuddled by the chimera of relativistic SU(6), which arose at 
about this time to cloud the minds of theorists. 

Five years later, John Iliopoulos, Luciano Maiani and I returned to the 
question of strangeness-changing neutral currents.l26l It seems incredible 
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that the problem was totally ignorned for so long. We argued that unob­
served effects (a large K1 K2 mass difference; decays like K ~ TTvii; etc.) 
would be expected to arise in any of the known weak interaction models: 
four fermion couplings; charged vector meson models; or the e!ectroweak 
gauge theory. We worked in terms of cut-offs, since no renormalizable 
theorv was known at the time. We showed how the unwanted effects would 
be eliminated with the conjectured existence of a fourth quark. After 
languishing for a decade, the problem of the selection rules of the neutral 
current was finally solved. Of course, not everyone believed in the predict­
ed existence of charmed hadrons. 

This work was done fully three years after the epochal work of Wein­
berg and Salam, and was presented in seminars at Harvard and at M. I. T. 
Neither I, nor my coworkers, nor Weinberg, sensed the connection be­
tween the two endeavors. We did not refer, nor were we asked to refer, to 
the Weinberg-Salam work in our paper. 

The relevance became evident only a year later. Due to the work of 
't Hooft, Veltman, Benjamin Lee, and Zinn-Justin, it became clear that the 
Weinberg-Salam ansatz was in fact a renormalizable theory. With GIM, it 
was trivially extended from a model of leptons to a theory of weak interac­
tions. The ball was now squarely in the hands of the experimenters. Within 
a few years, charmed hadrons and neutral currents were discovered, and 
both had just the properties they were predicted to have. 

FROM ACCELERATORS TO MINES 

Pions and strange particles were discovered by passive experiments which 
made use of the natural flux of cosmic rays. However, in the last three 
decades, most discoveries in particle physics were made in the active mode, 
with the artificial aid of particle accelerators. Passive experimentation 
stagnates from a lack off uncling and lack of interest. Recent developments 
in theoretical particle physics and in astrophysics may mark an imminent 
rebirth of passive experimentation. The concentration of virtually all high­
energy physics endeavors at a small number of major accelerator laborato­
ries may be a thing of the past. 

.This is not to say that the large accelerator is becoming extinct; it will 
remain an essential if not exclusive tool of high-energy physics. Do not 
forget that the existence of zo at - I 00 Ge V is an essential but quite 
untested prediction of the electroweak theory. There will be additional 
dramatic discoveries at accelerators, and these will not always have been 
predicted in advance by theorists.. The construction of new machines like 
LEP and ISABELLE is mandatory. 

Consider the successes of the electroweak synthesis, and the fact that the 
only plausible theory of strong interactions is also a gauge theory. We must 
believe in the ultimate synthesis of strong, weak, and electromagnetic 
interactions. It has been shown how the strong and electroweak gauge 
groups may be put into a larger but simple gauge group.l271 Grand 
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unification - perhaps along the lines of the original SU (5) theory of 
Georgi and me - must be essentially correct. This implies that the proton, 
and indeed all nuclear matter, must be inherently unstable. Sensitive 
searches for proton decay are now being launched. If the proton lifetime is 
shorter than I 032 years, as theoretical estimates indicate. it will not be long 
before it is seen to decay. 

Once the effect is discovered (and I am sure it will be), further experi-
ments will have to be done to establish the precise modes of decay of 
nucleons. The selection rules, mixing angles, and space-time structure of a 
new class of effective four-fermion couplings must be established. The 
heroic days of the discovery of the nature of beta decay will be repeated. 

The first generation of proton decay experiments is cheap, but subse­
quent generations will not be. Active and passive experiments will compete 
for the same dwindling resources. 

Other new physics may show up in elaborate passive experiments. To­
day's theories suggest modes of proton decay which violate both baryon 
number and lepton number by unity. Perhaps this 6B = 6L = I law will be 
satisfied. Perhaps 6B = - 6L transitions will be seen. Perhaps, as Pati and 
Salam suggest, the proton will decay into three leptons. Perhaps two 
nucleons will annihilate in 6B = 2 transitions. The effects of neutrino 
oscillations resulting from neutrino masses of a fraction of an election volt 
may be detectable. "Superheavy isotopes" which may be present in the 
Earth's crust in small concentrations could reveal themselves through their 
multi-GeV decays. Neutrino bursts arising from distant astronomical catas­
trophes may be seen. The list may be endless or empty. Large passive 
experiments of the sort now envisioned have never been done before. 
Who can say what results they may yield? 

PREMATURE ORTHODOXY 

The discovery of the J/'1' in 1974 made it possible to believe in a system 
involving just four quarks and four leptons. Very quickly after this a third 
charged lepton (the tau) was discovered, and evidence appeared for a 
third Q = - I /3 quark (the b quark). Both discoveries were classic sur­
prises. It became immediately fashionable to put the known fermions into 
families or generations: 

(u 11 e) (c 11 µ) (t 11,.) 
d e S J.L b T. 

The existence of a third Q = 2/3 quark (the t quark) is predicted. The 
Cabibbo-GIM scheme is extended to a system of six quarks. The three 
family system is the basis to a vast and daring theoretical endeavor. For 
example, a variety of papers have been written putting experimental 
constraints on the four parameters which replace the Cabibbo angle in a 
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six quark system. The detailed manner of decay of particles containing a 
single b quark has been worked out. All that is wanting is experimental 
confirmation. A new orthodoxy has emerged, one for which there is little 
evidence, and one in which I have little faith. .. 

The predicted t quark has not been found. While the upsilon mass is less 
than I 0 Ge V. the analogous tt particle, if it exists at all, must be heavier 
than 30 Ge V. Perhaps it doesn't exist. 

Howard Georgi and I, and other before us, have been working on 
models with not quark. 1281 We believe this unorthodox view is as attractive 
as its alternative. And, it suggests a number of exciting experimental 
possibilities. 

We assume that band r share a quantum number, like baryon number, 
that is essentially exactly conserved. (Of course, it may be violated to the 
same extent that baryon number is expected to be violated.) Thus, the b,r 
system is assumed to be distinct from the lighter four quarks and 
four leptons. There is, in particular, no mixing between b and d or 
s. The original GIM structure is left intact. An additional mechanism 
must be invoked to mediate b decay, which is not present in the 
SU(3) x SU(2) x U(l) gauge theory. 

One possibility is that there is an additional SU (2) gauge interaction 
whose effects we have not yet encountered. It could mediate such decays 
of bas these 

All decays of b would result in the production of a pair of leptons, 
including a r+ or its neutral partner. There are other possibilities as well, 
which predict equally bizarre decay schemes for b-matter. How the b quark 
decays is not yet known, but it soon will be. 

The new SU (2) gauge theory is called upon to explain CP violation as 
well as b decay. In order to fit experiment, three additional massive 
neutral vector bosons must exist, and they cannot be too heavy. One of 
them can be produced in e+ e- annihilation, in addition to the expected z0 • 

Our model is rife with experimental predictions, for example: a second zo, 
a heavier version of band of r, the production of r bin e p collisions, and 
the existence o( heavy neutral unstable leptons which may be produced 
and detected in e+ e- or in vp collisions. 

This is not the place to describe our views in detail. They are very 
speculative and probably false. The point I wish to make is simply that it is 
too early to convince ourselves that we know the future of particle physics. 
There are too many points at which the conventional picture may be 
wrong or incomplete. The SU(3)XSU(2)X U(l) gauge theory with three 
families is certainly a good beginning, not to accept but to attack, extend, 
and exploit. We are far from the end. 
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GAUGE FIELD 
THEORIES 

AN INTRODUCTION 
A self-contained introduction to the basic notions and 
principles of gauge theories, this text develops the 
Salam-Weinberg model of electroweak interactions in 
some detail, including its verification in the study of 
neutrino-lepton scattering and the parton model. This 
model is at present the most successful attempt at a 
unified theory of physical interactions. Another chapter 
deals with the gravitational field. Reprints of the 1979 
Nobel lectures by Professor Sheldon L Glashow, Abdus 

Salam and Steven Weinberg are also included. 
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